Pulver av TiNbZrSn-legering

TiNbZrSn-legeringspulver är ett avancerat kompositmaterial med exceptionella egenskaper som gör det lämpligt för ett brett spektrum av krävande applikationer. Den här artikeln ger en omfattande översikt över TiNbZrSn-pulver inklusive dess sammansättning, egenskaper, produktionsmetoder, applikationer, leverantörer och mer.

Låg MOQ

Tillhandahålla låg minsta orderkvantitet för att möta olika behov.

OEM & ODM

Tillhandahålla kundanpassade produkter och designtjänster för att tillgodose unika kundbehov.

Tillräckligt lager

Säkerställa snabb orderhantering och tillhandahålla tillförlitlig och effektiv service.

Kundtillfredsställelse

Tillhandahålla högkvalitativa produkter med kundnöjdhet i fokus.

dela denna produkt

Innehållsförteckning

TiNbZrSn Alloy Powder Composition

TiNbZrSn alloy powder consists of the following elements:

Element Vikt %
Titan (Ti) 35-40%
Niobium (Nb) 35-40%
Zirkonium (Zr) 5-10%
Tin (Sn) 5-10%

This precise combination of titanium, niobium, zirconium and tin results in an alloy with outstanding strength, hardness, and elasticity compared to conventional alloys. The niobium content in particular significantly enhances the mechanical performance.

By carefully controlling the ratios of the constituent metals, the properties of the alloy powder can be optimized for different applications requiring high strength-to-weight characteristics, corrosion resistance, biocompatibility, or high-temperature durability.

TiNbZrSn Alloy Powder Properties

TiNbZrSn alloy powder exhibits the following exceptional properties:

Fastighet Beskrivning
Hög hållfasthet Yields strength over 1400 MPa, on par with advanced aerospace alloys
Låg densitet Density around 6.5 g/cm3, much lower than steel
Excellent elasticity Young’s modulus around 100 GPa, enabling flexibility
High hardness Vickers hardness over 450 HV, better abrasion resistance than stainless steel
God korrosionsbeständighet Resists corrosion in harsh environments
Biokompatibilitet Non-toxic and suitable for medical implants
High melting point Melting above 2500°C making it viable for high temperature applications

The combination of high strength, low weight, hardness and elasticity is rare and makes TiNbZrSn an extremely versatile material. It outperforms conventional alloys like stainless steel across multiple properties.

TiNbZrSn Alloy Powder Production

TiNbZrSn alloy powder can be produced using the following advanced methods:

Metod Beskrivning
Atomisering av gas Molten alloy sprayed into fine droplets which solidify into powder
Process med roterande elektrod och plasma (PREP) Electrode rotates rapidly in plasma arc to disintegrate into powder
Hydride-dehydride (HDH) Alloy is hydrogenated, mechanically crushed into powder, then de-hydrogenated

Gas atomization allows control over particle size distribution and results in smooth spherical powder ideal for additive manufacturing. PREP and HDH methods allow economical production of irregular powder suitable for pressing and sintering.

The alloy composition can be precisely maintained in these powder production processes, ensuring consistent properties. High purity inert gas atmospheres prevent contamination.

TiNbZrSn Alloy Powder Applications

Thanks to its well-balanced material properties, TiNbZrSn alloy powder is used in the following applications:

Industri Tillämpning
Flyg- och rymdindustrin Aircraft and rocket engine components, space systems
Fordon Valve springs, fasteners, actuators
Medicinsk Implants, prosthetics, devices
Försvar Armor, munitions, ballistics
Additiv tillverkning 3D printed parts with high strength
Kemisk bearbetning Corrosion resistant vessels, piping

The combination of strength, hardness, and biocompatibility makes TiNbZrSn suitable for load-bearing implanted devices like hip and knee joints. Its corrosion resistance suits it for seawater-exposed naval applications. And its high-temperature durability is an advantage in jet engines and turbines.

Compared to conventional alloys, TiNbZrSn enables lighter, stronger and longer-lasting components giving it an edge in demanding industries.

TiNbZrSn Alloy Powder Specifications

TiNbZrSn alloy powder is commercially available in the following specifications:

Attribut Detaljer
Particle sizes 15-45 microns, 45-106 microns, 106-250 microns
Partikelns form Sfärisk, oregelbunden
Renhet Upp till 99,9%
Syrehalt Under 2000 ppm
Powder grades Grade 5, 23, 23 ELI
Supply form Loose powder, sintered preforms

Both gas atomized spherical powder and irregular powder from HDH or PREP is available. Smaller 15-45 micron powder is suited for additive manufacturing needing good flow and packing. Larger 106-250 micron powder is typically pressed and sintered.

Standards like ASTM F1805 and ISO 5832 provide composition limits and required properties for biomedical grade 23 ELI powder. Custom alloy compositions and particle sizes can also be produced to meet application requirements.

TiNbZrSn Alloy Powder Suppliers

Some leading global suppliers of TiNbZrSn alloy powder include:

Leverantör Plats
AMETEK USA
CNPC Pulver Kina
GKN Hoeganaes Europe
LPW-teknik STORBRITANNIEN
Sandvik Osprey STORBRITANNIEN

Reputable suppliers like these have advanced in-house powder production facilities using gas atomization or hydride-dehydride processes. They can provide various particle size distributions and customize the alloy composition as needed.

Small batch prototyping quantities to large commercial volumes are available. Strict quality control and testing is implemented by suppliers to ensure powder meets specifications.

TiNbZrSn Alloy Powder Pricing

As an advanced specialty alloy, TiNbZrSn powder commands a premium price:

Pulverkvalitet Prisintervall
Betyg 5 $350-$500 per kg
Grade 23 $450-$650 per kg
Grade 23 ELI $550-$750 per kg

The pricing depends on order quantity, particle size distribution, shape, and composition. Smaller quantities of fine spherical powder are more expensive. Irregular powder and larger batch sizes offer cost savings.

The pricing is several times higher than common alloys like 316L stainless steel powder. However, the superior properties justify the higher cost for critical applications needing maximized performance.

TiNbZrSn Alloy Powder Handling

To safely handle TiNbZrSn alloy powder:

  • Store sealed containers in a cool, dry environment to prevent oxidation and hydration
  • Avoid spillage to prevent powder accumulation as explosion hazard
  • Ground all powder handling equipment and transport vessels
  • Wear gloves and respiratory protection when handling powder
  • Use non-sparking tools and vacuum systems with inert gas blanketing
  • Employ ventilation and point-of-source fume extraction where required

The fine particle size makes TiNbZrSn powder flammable when dispersed. Careful handling following safety protocols is essential. Automated glove box handling and containment systems are recommended.

TiNbZrSn Alloy Powder Inspection

TiNbZrSn alloy powder should be inspected for:

Parameter Metod Acceptance Criteria
Fördelning av partikelstorlek Laserdiffraktion, siktning Meets specified range
Partikelns form SEM-avbildning Spherical, smooth surfaces
Particle chemistry EDX/EDS, ICP-OES Conforms to specified composition
Syre/nitrogen Fusion med inert gas Under 2000 ppm oxygen
Skenbar densitet Hall-flödesmätare Better flow for higher density
Flödeshastighet Hall-flödesmätare Flows freely through aperture

These tests ensure the powder meets specifications for size, shape, chemistry, cleanliness and flowability required for AM or press-and-sinter use.

TiNbZrSn Alloy Powder Testing

The following further tests may be done to qualify TiNbZrSn alloy powder:

Test Metod Syfte
Kompressibilitet Uniaxial pressing Assess compaction response
Green strength Tvärgående brotthållfasthet Measure strength before sintering
Density after sintering Dimensional measurement Ensure full consolidation
Mikrostruktur Optical microscopy, SEM Assess melting, porosity, grains
Hårdhet Vickers/Rockwell tests Verify mechanical properties
Draghållfasthet ASTM E8 Measure UTS, yield, elongation

Testing compressed and sintered samples is prudent to confirm powder processability and final mechanical properties versus design requirements.

TiNbZrSn Alloy Powder Pros and Cons

Fördelar Nackdelar
Exceptional strength-to-weight ratio Expensive compared to common alloys
Higher elasticity than other high-strength alloys Lower ductility than titanium alloys
Excellent hardness and wear resistance Requires careful handling due to reactivity
Resists corrosion in harsh environments Difficult to machine and grind
Biocompatible for medical uses Limited suppliers and availability
Withstands extremely high temperatures Needs hot isostatic pressing for full consolidation

For critical applications where performance outweighs cost, TiNbZrSn alloy powder delivers properties unmatched by other alloys. The main limitations are cost and availability.

Comparing TiNbZrSn to Other Alloys

How does TiNbZrSn compare to other high-performance alloy powders?

Versus stainless steel:

  • 2x higher strength
  • 70% lower density
  • 5x higher hardness
  • Better corrosion resistance

Versus titanium alloys:

  • 50% higher elasticity
  • 20% higher hardness
  • Better creep resistance
  • Lower ductility

Versus cobalt-chrome alloys:

  • Lägre densitet
  • No toxic effects
  • Higher service temperature
  • Lower toughness

Versus Ni-based superalloys:

  • Easier processing
  • Lower cost
  • Lower temperature capability
  • Lower creep strength

So TiNbZrSn presents an optimal balance of properties not found in other alloys, making it suitable for the most demanding applications.

TiNbZrSn Alloy Powder Usage Insights

Here are some key insights on using TiNbZrSn effectively:

  • Gas atomized powder with controlled particle size distribution flows and packs best for AM
  • Irregular powder requires higher pressures for compacting and sintering
  • Hot isostatic pressing helps achieve maximum density and properties
  • Annealing can be used to tailor ductility and toughness as needed
  • Near-net-shape parts minimize costly machining of sintered components
  • Surface treatments improve wear resistance for sliding contact applications
  • Joining dissimilar materials to TiNbZrSn requires selection of suitable process
  • Tight supplier qualifications and testing helps ensure powder quality and performance

Understanding processing-microstructure-property relationships is important to harness the full potential of this exceptional alloy.

Frequently Asked Questions

Here are some common FAQs about TiNbZrSn alloy powder:

Q: Is TiNbZrSn powder compatible with 3D printing?

A: Yes, gas atomized TiNbZrSn with controlled particle size and high sphericity can be used for powder bed fusion and directed energy deposition AM processes. Parameters need optimization to achieve high density.

Q: What particle size is best for additive manufacturing?

A: 15-45 microns is recommended, ensuring good powder flow and packing. Larger sizes up to 106 microns have also been successfully printed for some applications requiring thicker layers.

Q: Does TiNbZrSn require hot isostatic pressing after AM?

A: HIP helps maximize density, eliminate internal pores and improve mechanical properties. But for some less demanding applications, as-printed TiNbZrSn parts may meet requirements without HIP.

Q: Can you machine and grind TiNbZrSn alloy?

A: Yes, but it requires rigid setups, high pressure coolant, sharp carbide tools and fine abrasives. Feed rates and speeds need to be lower than conventional alloys due to its hardness.

Q: Is TiNbZrSn suitable for biomedical implants?

A: Yes, it has been used for bone plates, hip and knee implants thanks to its biocompatibility, low modulus and high strength ideal for load-bearing devices. Grade 23 ELI powder provides the needed purity.

Q: What are typical applications for TiNbZrSn alloy?

A: Aerospace components like landing gear, automotive springs and fasteners, biomedical implants, armor plates, power generation turbines, and tooling for molding and sheet metal stamping.

Slutsats

In summary, TiNbZrSn alloy powder offers extraordinary strength coupled with low density, elasticity, and hardness unlike any other conventional or advanced alloys. Though costs are higher, many critical performance applications justify the expense where optimized material properties are paramount. With expanded availability and ongoing innovations, the unique capabilities of TiNbZrSn will be leveraged across more industries in the years ahead.

Få det senaste priset

Om Met3DP
Spela video om 3dp-fabrik för metall

HOT SALE

KONTAKTA OSS

Har du några frågor? Skicka oss meddelande nu! Vi kommer att betjäna din begäran med ett helt team efter att ha fått ditt meddelande.