Výroba kovového prášku
Obsah
Přehled
Kovové prášky are fine metal particles used as feedstock for manufacturing techniques like additive manufacturing, metal injection molding, and powder metallurgy pressing and sintering. Producing advanced specialty metal powders with precise control of chemistry, particle size distribution, morphology, and microstructure is critical to properties of finished components.
There are various methods used for large scale production of metal powder production from different alloy systems including:
- Rozprašování plynu
- Rozprašování vody
- Plazmová atomizace
- Electrode induction melting gas atomization
- Proces rotační elektrody
- Karbonylový proces
- Electrolytic process
- Metal reduction processes
Each process results in powders with different characteristics suited to specific applications.
Způsoby výroby kovového prášku
Metoda | Použité kovy | Klíčové vlastnosti | Hlavní aplikace |
---|---|---|---|
Atomizace plynu | Titanium, aluminum, stainless steel, tool steel, superalloys | Spherical powders, moderate production rate | Metal injection molding, Hot isostatic pressing |
Atomizace vody | Low-alloy steel, iron, copper | Irregular powder shapes, higher oxygen content | Press and sinter process |
Plazmová atomizace | Titanium alloys, superalloys | Very fine spherical powders | Aditivní výroba |
Rotační elektroda | Tungsten, molybdenum, tantalum | Controlled grain structure | Filaments, cutting tools |
Karbonylový proces | Iron, nickel, cobalt | Ultrafine high purity powders | Electronic components, magnets |
Elektrolytické | Copper, nickel | Dendritic flake morphology | Povrchové nátěry |
Kovový prášek Výrobní metody
There are a variety of commercial methods used for producing metallic powders from different alloy systems. The choice of production method depends on factors like:
- Type of alloy material
- Purity requirements
- Desired powder characteristics like particle size, shape, grain structure
- Scale of production in tons per year
- Powder end use application
Here are some of the most common industrial processes for metal powder production:
Proces atomizace plynu
In gas atomization process, a stream of molten metal alloy is disintegrated by high pressure jets of gas, usually nitrogen or argon. The metal stream breaks up into fine droplets, which solidify into powder particles.
Gas atomized powders have a spherical shape and smooth surface morphology. Particle size distribution can be controlled by adjusting process parameters. This is a widely used technique for reactive materials like titanium, aluminum, magnesium alloys as well as stainless steels, tool steels and nickel superalloys.
Parametr | Popis |
---|---|
Metals used | Titanium alloys, aluminum, magnesium, stainless steel, tool steel, superalloys |
Tvar částic | Sférická morfologie |
Velikost částic | 50 – 150 μm typical |
Čistota | High, inert gas prevents contamination |
Vyzvednutí kyslíku | Minimal compared to liquid metal atomization |
Rozsah výroby | Up to 10,000 metric tons per year |
Atomizace vody
In water atomization, the molten metal stream is hit by high velocity water jets. The sudden cooling causes an explosion that breaks the metal into fine particles. The powders have irregular shapes and contain higher oxygen content from water contact.
Water atomization is lower cost process used for producing large volumes of stainless steel, alloy steel, iron and copper powders for pressing and sintering type applications.
Parametr | Popis |
---|---|
Metals used | Carbon steels, low alloy steels, stainless steels, copper, iron powders |
Tvar částic | Irregular morphology from explosive water breakup |
Velikost částic | 10 – 300 μm typical |
Čistota | Lower, water contact increases oxygen levels by 200-500 ppm |
Rozsah výroby | Very high, over 50,000 tons per year |
Plasma Atomization Process
In plasma atomization process, a plasma torch is used to melt the metal alloy before disintegration into fine droplets through gas jets. The ultra-high temperatures enable highly reactive elements like titanium aluminides to be successfully atomized.
The powders have a very spherical shape and narrow size distribution suitable for additive manufacturing methods like laser melting and electron beam melting.
Parametr | Popis |
---|---|
Metals used | Titanium alloys, nickel superalloys, titanium aluminides |
Tvar částic | Vysoce sférický |
Velikost částic | 15 – 45 μm typical |
Čistota | Very high purity due to melting under inert atmosphere |
Rozsah výroby | Lower, about 100 – 1000 tons per year |
Rotating Electrode Process (REP)
In the rotating electrode process, a cylindrical metallic electrode is spun at high speeds in an evacuated chamber. It is melted using an electric arc and the molten metal droplets flung off through centrifugal forces cool to form powders.
REP powders have a grain structure and morphology ideal for hot extrusion into fine wires and rods for aerospace alloys like tungsten, molybdenum, tantalum.
Parametr | Popis |
---|---|
Metals used | Tungsten, molybdenum, tantalum |
Tvar částic | Irregular, controlled microstructure |
Velikost částic | 45 – 150 μm typical |
Čistota | Very high from processing under vacuum |
Rozsah výroby | Small volumes of high value powders |
Elektrodová indukční atomizace plynem (EIGA)
The EIGA process uses induction heating to melt consumable electrode tips in an inert gas atmosphere. The droplets undergo secondary gas atomization by argon jets into fine spherical powders.
EIGA enables very high purity of reactive nickel superalloys for critical aerospace components through controlled melting and minimizing contamination.
Parametr | Popis |
---|---|
Metals used | Nickel superalloys, titanium aluminides |
Tvar částic | Sférické |
Velikost částic | 15 – 53 μm typical |
Čistota | Extremely high, customized for critical alloys |
Rozsah výroby | R&D/prototyping to mid-volume |
Karbonylový proces
In the carbonyl process, metal is converted into a volatile carbonyl, which decomposes under controlled conditions to produce uniform, ultrafine metallic particles. This approach is suitable for producing highly pure iron, nickel and cobalt powders.
Parametr | Popis |
---|---|
Metals used | Iron, nickel, cobalt |
Tvar částic | Spherical to polyhedral |
Velikost částic | 1 – 10 μm typical |
Čistota | Extremely high 99.9%+ purity |
Rozsah výroby | Up to 30,000 tons per year |
Other Powder Production Methods
Some other techniques used for specialty metal powder production include:
- Electrolytic Process: Used for producing irregular shaped copper and nickel powders with dendritic morphology by electro-deposition process
- Metal Reduction Processes: Reduction of metal oxides using hydrogen or carbon to produce titanium, zirconium, tungsten, molybdenum powders
- Mechanické legování: High energy ball milling to synthesize composite and nanostructured alloys
Kovový prášek Specifikace
Critical quality attributes and specifications tested for metal powders depend on production method and end-use application but typically include:
Powder Chemistry
- Alloy composition using optical emission or X-ray fluorescence spectroscopy
- Minor alloying elements
- Impurity elements like oxygen, nitrogen, hydrogen
- Loss on ignition testing at high temperature
Distribuce velikosti částic
- Volume mean particle size
- Distribution widths like D10, D50, D90
Particle Shape Characterization
- Scanning electron microscopy for morphology
- Shape factors like aspect ratio and form factor
Mikrostruktura
- Phases present using X-ray diffraction
- Grain characteristics from imaging
Vlastnosti prášku
- Zdánlivá hustota/hustota odběru
- Flow rates through Hall flowmeter funnel tests
- Compressibility levels
Specification requirements for powders vary widely depending on end use in different applications:
Parametr | Vstřikování kovů (MIM) | Aditivní výroba | Lisování a spékání |
---|---|---|---|
Rozsah velikosti částic | 3 – 25 μm | 15 - 45 μm | 150 – 300 μm |
Poměr stran | 1 – 1.25 preferred | <1.5 spherical | Not critical |
Oxygen levels | <1000 ppm | <500 ppm | 2000 – 4000 ppm |
Zdánlivá hustota | >2.5 g/cm3 | >2.8 g/cm3 | 2 – 3 g/cm3 |
Hallův průtok | 15 – 35 s/50g | 25 - 35 s/50 g | >12 s/50g |
Characterization Methods
There are several analytical methods used to characterize the properties of metal powders essential to product performance:
Particle Size Analysis
Laser diffraction methods are most widely used to characterize the particle size distribution. This technique passes a laser beam through a dispersed powder sample which scatters light at an angle dependent on particle sizes. Computer analysis of the diffraction pattern provides detailed statistically relevant size distribution data within seconds.
Morphology and Surface Imaging
Scanning electron microscopy (SEM) provides high resolution images of powder particle shape, surface topographies and features at much higher magnification and depth of focus compared to optical microscopy.
SEM imaging is used to study particle rounding, satellite formation, surface smoothness and defects like porosity.
Density and Flow Property Measurement
Standard test methods have been established to quantify bulk behavior using:
- Hall flowmetry funnel to measure powder flow rates through an orifice
- Carney funnel to assess flowability by angle of repose
- Scott volumeter to determine tap density and compressibility
These methods help predict ease of handling, blending, die filling and spreading during component manufacturing.
X-ray Methods for Composition and Crystal Structure
- X-ray fluorescence spectroscopy accurately identifies and quantifies elemental composition of metals
- X-ray diffraction analyzes the atomic arrangements and phases present by diffraction peak patterns
-
Ti45Nb prášek pro aditivní výrobu
-
Prášek ze slitiny TiNb
-
Prášek ze slitiny TiNbZrSn
-
Ti6Al4V prášek Kovový prášek na bázi titanu pro aditivní výrobu
-
CPTi prášek
-
TC18 Powder : Odemknutí síly karbidu titanu
-
TC11 Powder: Komplexní průvodce
-
TC4 ELI prášek
-
Nejlepší prášek Ti-6Al-4V (TC4 Powder) pro aditivní výrobu
Použití kovových prášků
Some major end uses of engineering metal powders include:
Aditivní výroba
Also known as 3D printing techniques like selective laser melting (SLM), direct metal laser sintering (DMLS) and electron beam melting (EBM) to build complex geometries from titanium, aluminum, stainless steel, superalloy, cobalt chrome powders.
Vstřikování kovů (MIM)
Powders like stainless steels, titanium alloys and tool steels are combined with a binder, injection molded then sintered to manufacture small, complex parts at high volumes for lower costs.
Powder Metallurgy Press and Sinter
Compacting and sintering iron, copper and alloy steel powders into high volume components like gears, bushings and magnets.
aplikace | Použité kovy | Key Property Needs |
---|---|---|
Aditivní výroba | Titanium alloys, nickel superalloys, aluminum, tool steel, stainless steel, cobalt chrome | Spherical morphology Good flowability High purity |
Vstřikování kovů | Stainless steel, titanium, tool steel, tungsten heavy alloys | Fine <25 μm powder Good packed density |
Lisování a spékání | Iron, steel, stainless steel, copper | Cost effective powder Lubricant coatings |
There are also niche applications in areas like welding, diamond tools, electronics and surface coatings that use specialty metal powders.
Dodavatelé a ceny
Some leading global suppliers of various metal powders are:
Společnost | Výrobní metody | Materiály |
---|---|---|
Sandvik Osprey | Rozprašování plynu | Slitiny titanu, hliníku a niklu |
AP&C | Plazmová atomizace | Titanium aluminides, superalloys |
Tesařská technologie | Gas, water atomization | Tool steels, stainless steels, alloys |
Höganäs | Rozprašování vody | Iron, stainless steels |
JFE Steel | Rozprašování vody | Prášky z nerezové oceli |
Rio Tinto | Hliníkový prášek | Carbonyl nickel and iron |
Pricing for metal powders varies widely by:
- Alloy material and composition
- Použitá výrobní metoda
- Processing to achieve particle characteristics
- Purity levels and degree of contamination
- Purchase volumes – very high volume contracts bring lower pricing
Typical base prices per kilogram are:
Materiál | Odhad ceny |
---|---|
Nerezová ocel 316L | $12 – $30 per kg |
Hliník AlSi10Mg | $15 – $45 per kg |
Titan Ti-6Al-4V | $80 – $220 per kg |
Nickel superalloy Inconel 718 | $90 – $250 per kg |
Specialty alloys for AM | $250 – $1000 per kg |
Prices go up significantly for highly customized particle size distributions, controlled oxygen and nitrogen levels below 100 ppm, and small lot purchases.
Advantages and Limitations of Powder Metallurgy
Benefits of Powder Metallurgy
- Ability to produce complex geometries not possible through casting or machining
- Near-net-shape manufacturing reduces material waste
- Higher performance metals and alloys can be used
- Consistent porosity structures not possible in ingot metallurgy
- Components can be mass customized
Limitations of Powder Production and Processing
- Capital investment for production and handling equipment is very high
- Increased surface area makes handling pyrophoric reactive powders risky
- Achieving high compaction densities can require high pressures
- Additional process steps compared to casting
- Portability of AM machines due to powder being LO/NO
Here is a quick comparison of powder metallurgy against the conventional casting process:
Parametr | Prášková metalurgie | Casting |
---|---|---|
Složité tvary | ✅ Excellent for layered AM builds | Limited for typical castings |
Mechanické vlastnosti | Can approach cast properties after Hot Isostatic Pressing | ✅ Predictable properties |
Cycle time | Slower process for AM methods | ✅ Faster for volume production |
Rozměrová přesnost | Varies, depends on post-processing | Very good for precision investment castings |
Equipment costs | Very high for industrial AM machines | ✅ Lower capital costs |
Types of metals | Continually expanding options | ✅ Broadest selection |
Nejčastější dotazy
Q: What is the typical particle size range used in metal 3D printing powders?
A: In powder bed technologies like selective laser melting (SLM) and electron beam melting (EBM), the optimal particle size range is 15-45 microns. Finer powders improve resolution but can be challenging to handle and process.
Q: What determines morphology of metal powders from different methods?
A: Production factors like intensity of melt stream breakdown forces from gas jets or water impacts and subsequent cooling rates determine particle shapes. Faster cooling produces irregular, dendritic particles while slower solidification (spherical atomization) enables smooth rounded structures.
Q: Why is high purity important for metal powders in additive manufacturing?
A: Impurities can cause defects, porosity issues, alter alloy microstructures, reduce density, affect performance under loads and temperatures – negatively impacting mechanical properties. Target oxygen levels below 500 ppm and nitrogen levels below 100 ppm have become typical.
Q: How are metal powders handled safely during transportation and storage?
A: Reactive metal powders are passivated to create oxidized surfaces minimizing flammability risk. Powders are sealed in drums under inert gases like argon instead of air during shipment to prevent ignition. Storage containers must be properly grounded. Personnel wear specialized PPE while handling.
Q: What are common powder characterization methods?
A: Hall flowmetry, tap density tests, pycnometry, LOI testing, spectrographic analysis, metallography and particle size distribution using laser or sieve techniques are vital to quantifying behavior, building quality process control for metal powder production and assessing batch suitability for given applications.
Sdílet na
Facebook
Cvrlikání
LinkedIn
WhatsApp
E-mailem
MET3DP Technology Co., LTD je předním poskytovatelem řešení aditivní výroby se sídlem v Qingdao v Číně. Naše společnost se specializuje na zařízení pro 3D tisk a vysoce výkonné kovové prášky pro průmyslové aplikace.
Dotaz k získání nejlepší ceny a přizpůsobeného řešení pro vaše podnikání!
Související články
Prosinec 18, 2024
Žádné komentáře
Spherical Duplex Stainless Steel Alloy Powder: The Best Material for Harsh Conditions
Přečtěte si více "
Prosinec 17, 2024
Žádné komentáře
O Met3DP
Nedávná aktualizace
Náš produkt
KONTAKTUJTE NÁS
Nějaké otázky? Pošlete nám zprávu hned teď! Po obdržení vaší zprávy obsloužíme vaši žádost s celým týmem.
Kovové prášky pro 3D tisk a aditivní výrobu
SPOLEČNOST
PRODUKT
kontaktní informace
- Město Qingdao, Shandong, Čína
- [email protected]
- [email protected]
- +86 19116340731