3Dプリンティング金属粉末

目次

概要

アディティブ・マニュファクチャリング(AM)としても知られる3Dプリンティングは、金属粉末を利用して、デジタルモデルから直接、層ごとに複雑なコンポーネントを構築する。粉末は、CADモデルの形状に導かれた精密な熱源によって選択的に溶融または結合される。

金属用の一般的なAMプロセスには、バインダージェッティング、指向性エネルギー蒸着、パウダーベッドフュージョン、シートラミネーションなどがあります。それぞれが、最適な密度、表面仕上げ、寸法精度、機械的特性を達成するために、特定の特性を持つ粉末原料を必要とします。

このガイドでは、合金の種類、粉末の製造方法、主な粉末特性、用途、仕様、サプライヤー、材料調達時の購入上の注意点など、3Dプリント用の金属粉末について詳しく解説しています。有用な比較表は、粉末の選択と認定に役立つ技術データを要約しています。

最適化された3Dプリントパウダーの知識豊富なサプライヤーとつながることで、メーカーはプリント品質を向上させ、欠陥を減らし、設計の自由度、反復の迅速化、パーツの統合といったAMの利点を十分に活用することができます。

3Dプリント用金属粉末

3Dプリンティング粉末用合金

さまざまな金属や合金が、AMプロセスに適した粉末状で入手できる:

一般的な合金システム 3Dプリンティング金属粉末

  • ステンレス鋼
  • 工具鋼
  • チタンおよびチタン合金
  • アルミニウム合金
  • ニッケル超合金
  • コバルトクロム合金
  • 銅合金
  • 貴金属

耐食性、強度、硬度、導電性、その他の特性など、特定の用途要件を満たすために、標準合金とカスタム合金の両方を調達することができます。

AM用金属粉末製造法

アディティブ・マニュファクチャリング(Additive Manufacturing)は、金属粉末を利用して製造される:

3Dプリンティングのための代表的な金属粉末製造方法

  • ガス噴霧
  • 水の霧化
  • プラズマ霧化
  • 電解
  • カルボニル鉄プロセス
  • メカニカルアロイング
  • 金属の水素化/脱水素化
  • プラズマ球状化
  • 造粒

球状アトマイズ粉末は、ほとんどのAMプロセスに必要な最適な流動性と高密度充填を提供します。ナノスケールやカスタマイズされた合金粒子を可能にする技術もあります。

金属印刷用粉末の主な特徴

AMにとって重要な粉末の特性には次のようなものがある:

金属3Dプリンティングパウダーの特性

特徴代表値重要性
粒度分布10~45ミクロン緻密化、表面仕上げに影響
粒子形状球形フローとパッキングの改善
見かけ密度2~4 g/ccベッド密度への影響
タップ密度3~6 g/cc圧縮性を示す
ホール流量25~50秒/50gパウダーがスムーズに広がる
強熱減量0.1-0.5%低水分が印刷を向上させる
酸素含有量<0.1%微細構造の欠陥を最小限に抑える

粒子径、形状、化学的性質などの特性を精密に制御することは、所望の機械的特性を備えた完全高密度AMパーツを実現する上で極めて重要である。

の応用 3Dプリンティング金属粉末

AMは、従来の技術では不可能だった複雑な形状を可能にする:

金属3Dプリンティングアプリケーション

産業用途メリット
航空宇宙タービンブレード、構造物設計の自由度、軽量化
メディカルインプラント、補綴物、器具カスタマイズされた形状
自動車プロトタイプとツールの軽量化迅速な反復
ディフェンスドローン部品、保護構造迅速な試作と短納期
エネルギー熱交換器、マニホールド部品の統合とトポロジーの最適化
エレクトロニクスシールド、冷却装置、EMI複雑な密閉構造

軽量化、部品の統合、過酷な環境に対応する高性能合金は、従来の製造方法に比べて重要な利点をもたらします。

3Dプリンティング金属粉末の仕様

国際的な仕様は、AMパウダーの特性を標準化するのに役立つ:

積層造形用金属粉末規格

スタンダードスコープパラメータ試験方法
ASTM F3049AM金属の特性評価ガイドサンプリング、サイズ分析、化学、欠陥顕微鏡、回折、SEM-EDS
ASTM F3001-14AM用チタン合金粒子径、化学的性質、フローふるい分け、SEM-EDS
ASTM F3301AM用ニッケル合金粒子形状および粒子径分析顕微鏡、画像解析
ASTM F3056AM用ステンレススチール化学、粉体特性ICP-OES、ピクノメトリー
ISO/ASTM 52921AMパウダーの標準用語定義とパウダーの特徴様々な

公表された仕様に準拠することで、重要な用途のための再現性のある高品質の粉末原料が保証されます。

の世界的なサプライヤー 3Dプリンティング金属粉末

AMに最適化された金属粉末の主要な国際的サプライヤーには以下のようなものがある:

3Dプリンティング用金属粉末メーカー

サプライヤー材料代表的な粒子径
サンドビックステンレス、工具鋼、ニッケル合金15-45ミクロン
プラクセアチタン、超合金10~45ミクロン
エーピーアンドシーチタン、ニッケル、コバルト合金5~25ミクロン
カーペンター添加剤コバルトクロム、ステンレス、銅15-45ミクロン
LPWテクノロジーアルミニウム合金、チタン10-100ミクロン
イーオーエス工具鋼、コバルトクロム、ステンレス20~50ミクロン

その多くは、バインダージェッティング、パウダーベッドフュージョン、ディレクテッドエナジーデポジションといった一般的なAM手法用に特別に設計された微細な球状粉末に焦点を当てている。

3Dプリント用金属粉末の購入に関する考慮事項

金属粉末サプライヤーと話し合うべき重要な点:

  • 望ましい合金組成と特性
  • 目標とする粒度分布と形状
  • エンベロープの密度とホールの流動性
  • 酸素や水分などの許容不純物レベル
  • 必要な試験データと粉体の特性評価
  • 利用可能な数量範囲とリードタイム
  • 発火性物質の取り扱いに関する特別な注意事項
  • 品質システムと粉体原産地トレーサビリティ
  • AM特有の粉体要件に関する技術的専門知識
  • ロジスティクスと配送メカニズム

最適化されたAMパウダーの経験豊富なサプライヤーと緊密に協力し、お客様のプロセスとコンポーネントに最適なパウダーを選択します。

金属3Dプリント粉末の長所と短所

AM用金属粉末の利点と限界

メリットデメリット
複雑なカスタマイズ形状が可能従来の素材よりも高いコスト
開発期間を大幅に短縮粉体の取り扱いに関する注意事項
組み立てと軽量化を簡素化アズプリント部品には後処理が必要な場合が多い
溶製材に近い特性を実現サイズと構築ボリュームの制約
高価な金型、金型、ツーリングを排除熱応力は亀裂や歪みの原因となる。
部品の統合とトポロジーの最適化が可能従来の方法よりも生産量が少ない
購入対フライト率を大幅に改善厳密な粉体特性評価とパラメータ開発が必要

適切に使用されれば、金属AMは画期的な利点をもたらすが、成功させるには専門知識が必要である。

3Dプリント用金属粉末

よくあるご質問

AM用の金属粉末の粒径はどこまで小さくできるのか?

特殊な霧化技術により、1~10ミクロンまでの粉末を製造することができますが、ほとんどの金属プリンターは、良好な流動性とパッキングのために、最小サイズが15~20ミクロン程度であることが最も効果的です。

印刷された金属部品の表面仕上げが悪い原因は何ですか?

表面の粗さは、部分的に溶融したパウダーが表面に付着したり、スパッタ、階段状の段差、最適でないメルトプールの特性から発生します。より微細なパウダーを使用し、理想的な処理パラメータを設定することで、仕上がりが滑らかになります。

すべての金属3Dプリント法は、同じパウダーを使うのですか?

重複する部分もあるが、バインダージェッ トは一般に、粉末床溶融よりも幅広い粒度分布を使用する。プロセスによっては、融点や反応性に基づいて特定の合金に限定されるものもある。

混合粉末やバイメタル粉末はどのようにして作られるのですか?

プレアロイ粉末は均一な特性を保証するが、複合材料の場合は、物理的粉末混合や特殊な噴霧化技術によって、ブレンドされた元素粉末混合物を提供する。

金属プリンターで粉末材料を交換するのにかかる時間は?

完全なパージと、大きく異なる合金間の切り替えには、通常6~12時間を要する。似たような材料間の素早い交換は1時間以内で可能です。

結論

最適化された金属粉末は、複雑で堅牢な金属部品を優れた特性で製造する積層造形プロセスを可能にします。高品質な結果を得るには、合金化学と粉末特性を印刷方法とコンポーネントの性能要件に適合させることが重要です。経験豊富な粉末サプライヤーと提携することで、エンドユーザーは粉末製造と3Dプリンティングプロセス両方の専門知識を活用し、堅牢なAMコンポーネントをより迅速かつ確実に開発することができます。

より多くの3Dプリントプロセスを知る

シェアする

フェイスブック
ツイッター
LinkedIn
WhatsApp
電子メール

MET3DP Technology Co., LTDは、中国青島に本社を置く積層造形ソリューションのリーディングプロバイダーです。弊社は3Dプリンティング装置と工業用途の高性能金属粉末を専門としています。

お問い合わせは、最良の価格とあなたのビジネスのためのカスタマイズされたソリューションを取得します!

関連記事

メタル3DPの
製品パンフレット

最新製品&価格リスト