ニオブ・チタン粉

目次

ニオブチタン粉 は、優れた超電導特性と高い強度を持つ先進の金属間化合物材料である。この記事では、NbTi粉末の組成、製造方法、主要特性、用途、仕様、価格など、NbTi粉末の包括的な概要をご紹介します。

ニオブチタン粉末の概要

NbTiはニオブ(Nb)とチタン(Ti)からなる金属間化合物。臨界温度以下では抵抗ゼロで電気を通すことができ、超伝導材料と考えられている。NbTiは純粋なニオブに比べて強度が高く、チタンの添加によって超伝導特性が向上している。

NbTiを様々なハイテク用途に有用にしている主な特性は以下の通りである:

  • 高い臨界温度
  • 高い臨界磁場強度
  • 優れた延性と加工性
  • 優れた強度
  • 耐食性
  • 生体適合性

NbTi粉末は、ワイヤーやテープからロッドや特殊形状まで、様々な製品形状に圧縮することができる。主な用途は、MRI装置、粒子加速器、トカマク型核融合炉、高磁場マグネットなど、超伝導を利用したものである。強度と導電性を併せ持つNbTiは、先端医療機器、航空宇宙部品、粒子検出器、エネルギー貯蔵にも適している。

ニオブチタン粉

構成 ニオブチタン粉末

Niobium (Nb) Content (wt%)Titanium (Ti) Content (wt%)プロパティアプリケーション
40-5050-60* Good balance of strength and ductility * High corrosion resistance * Moderate machinability* Aerospace components (e.g., turbine blades, landing gear) * Chemical processing equipment * Biomedical implants
50-5644-50* High strength * Excellent creep resistance at elevated temperatures * Suitable for additive manufacturing (3D printing)* Jet engine parts * Heat exchangers * High-performance sporting goods
56-6535-44* Very high strength * Superior wear resistance * Limited ductility* Cutting tools * Wear plates * Military applications
65-7525-35* Extreme high-temperature strength * Improved oxidation resistance * Brittle at room temperature* Refractory crucibles * Rocket engine components * Leading edges of hypersonic vehicles

製造 ニオブチタン粉末

ステージ説明主な検討事項
Raw Material SelectionThe foundation for high-quality NbTi powder lies in meticulous selection of starting materials. Niobium and titanium, the primary elements, must be of high purity to minimize impurities in the final product.Niobium: Electron Beam Melted (EBM) niobium or niobium hydride powder are preferred due to their low oxygen content and good flowability. – チタン: Similar to niobium, high-purity titanium sponge or powder obtained through various techniques like Kroll process or hydride-dehydride (HDH) method is used.
パウダーの準備Here, the chosen niobium and titanium are transformed into a uniform powder mixture. There are two main approaches: pre-alloyed and blended elemental powders.Pre-alloyed method: This involves directly producing a NbTi alloy through techniques like metallothermic reduction or reactive sintering. It offers good control over composition but can be more complex and expensive. – Blended elemental method: Here, individual niobium and titanium powders are precisely weighed and mixed to achieve the desired final composition. This method is simpler but requires careful control of particle size and distribution for homogenous mixing.
Comminution (Grinding)Regardless of the preparation method, the resulting material (pre-alloyed or blended) might require size reduction to achieve the desired particle size range for NbTi powder. Grinding techniques like ball milling or attritor milling are employed.粒子径と分布: NbTi powder for different applications have specific particle size requirements. For instance, finer powders are suitable for additive manufacturing techniques, while larger particles might be used for traditional methods like wire drawing. – 汚染防止: During grinding, contamination from grinding media or lubricants needs to be minimized to maintain powder purity.
Classification and SegregationAfter grinding, the NbTi powder needs to be classified to achieve a narrow particle size distribution. This ensures consistent properties in the final product.Sieving: A traditional method that separates particles based on size using sieves with different mesh openings. However, sieving can be inefficient for submicron powders. – Air classification: This technique utilizes differing settling velocities of particles in an air stream to separate them based on size. It offers better control for finer powders.
Vacuum Cleaning and DegassingSince the presence of oxygen and other gases can negatively impact the superconducting properties of NbTi, these impurities need to be removed.Vacuum outgassing: The powder is subjected to high vacuum and elevated temperatures to remove adsorbed gases on the powder surface. – Electron beam melting (EBM) refining: An alternative approach involves melting the NbTi powder in a vacuum using an electron beam. This not only removes gases but also refines the microstructure and improves homogeneity.
Consolidation and FinishingThe final stage involves transforming the NbTi powder into a usable form depending on the desired application.Powder metallurgy techniques: NbTi powder can be pressed into shapes and sintered at high temperatures to create bulk materials. – アディティブ・マニュファクチャリング: Techniques like electron beam melting (EBM) or selective laser melting (SLM) can be used to create complex 3D structures directly from NbTi powder. – Wire drawing: NbTi powder can be consolidated into rods and then drawn into wires for applications like superconducting magnets.
ニオブ・チタン粉

プロパティニオブチタン粉

プロパティ説明インパクト
構成Niobium titanium (NbTi) powder is a binary alloy, meaning it primarily consists of two elements: niobium (Nb) and titanium (Ti). The specific ratio of these elements can vary depending on the desired properties of the final product. Common compositions include Nb42Ti58 and Nb56Ti44, indicating the weight percentage of each element in the alloy.The Nb content influences the high-temperature performance and corrosion resistance. Higher Nb content translates to better performance in these areas. Titanium, on the other hand, contributes to strength, hardness, and biocompatibility.
粒子径と形態Niobium titanium powder is available in a range of particle sizes, typically between 10 and 105 microns. The particle morphology, or shape, is usually spherical.Particle size plays a crucial role in powder bed fusion additive manufacturing processes, where the powder particles are melted together to form the final object. Smaller particles generally result in finer features and smoother surfaces but can be more challenging to handle due to increased surface area and potential for agglomeration (clumping). Spherical morphology offers good flow characteristics and packing density, essential for consistent material deposition during 3D printing.
密度The density of niobium titanium powder typically falls within the range of 6.2 to 6.5 g/cc (grams per cubic centimeter). This value is lower than that of pure niobium (8.57 g/cc) and slightly higher than pure titanium (4.51 g/cc), reflecting the combined contributions of both elements.Density is a critical factor for several applications. A lower density translates to lighter weight components in aerospace and automotive industries. However, for applications demanding high strength-to-weight ratio, a balance between density and mechanical properties is necessary.
機械的特性Niobium titanium powder exhibits a combination of desirable mechanical properties. Ultimate tensile strength, a measure of the maximum stress a material can withstand before failure, ranges from 500 to 800 MPa (megapascals). Yield strength, the stress at which a material begins to deform plastically, falls between 400 and 600 MPa. The modulus of elasticity, indicative of a material’s stiffness, is typically within the range of 52 to 69 GPa (gigapascals).These properties make niobium titanium powder suitable for applications requiring good strength and structural integrity. For instance, the high yield strength allows components to resist deformation under load. The adjustable range of properties through composition control enables tailoring the material for specific needs.
熱特性Niobium, a refractory metal, contributes significantly to the high melting point of niobium titanium powder, typically exceeding 3000°C. This translates to excellent high-temperature performance, making the material suitable for applications exposed to extreme heat.The high melting point allows niobium titanium components to function reliably in environments with elevated temperatures, such as in jet engines and rocket propulsion systems.
電気的特性Niobium titanium powder exhibits moderate electrical conductivity. While not as conductive as pure copper or aluminum, its conductivity is sufficient for certain electrical applications.The electrical conductivity can be beneficial for components requiring some level of electrical current flow, such as heat exchangers or components in electronic devices.
耐食性Niobium titanium powder demonstrates good corrosion resistance in various environments, including acidic, alkaline, and saline solutions. This resistance is attributed to the formation of a passive oxide layer on the surface that hinders further corrosion.The corrosion resistance enables the use of niobium titanium components in applications exposed to harsh environments, such as chemical processing equipment or marine components.
生体適合性The presence of titanium in niobium titanium powder contributes to its biocompatible nature. This property makes the material suitable for use in medical implants, such as artificial bones and joints, where good interaction with the body’s tissues is crucial.Biocompatibility minimizes the risk of rejection or adverse reactions when implanted in the human body. This characteristic opens doors for the development of advanced medical devices with improved patient outcomes.

アプリケーション ニオブチタン粉末

産業申し込み活用された主要資産メリット
航空宇宙* Aircraft structural components (wings, fuselage) * Jet engine components (disks, blades) * Rocket propulsion systems (thrust chambers, nozzles)* High strength-to-weight ratio * Excellent mechanical strength at elevated temperatures * Superior creep resistance* Lightweight construction for improved fuel efficiency and increased payload capacity * Enhanced performance in high-stress environments * Extended component lifespan due to resistance to deformation under heat
メディカル* Orthopedic implants (bone plates, screws, joint replacements) * Surgical instruments* Biocompatible – minimizes risk of rejection by the body * Outstanding corrosion resistance – reduces risk of infection * Good machinability – allows for creation of complex implant geometries* Enables long-term implantation for improved patient outcomes * Provides a durable and reliable material for surgical procedures * Facilitates minimally invasive surgery through creation of intricate instruments
エネルギー* Superconducting magnets for MRI machines and particle accelerators * High-performance electrodes for energy storage devices* Superconductivity – allows for efficient transmission of electricity with minimal losses * High electrical conductivity – facilitates efficient energy transfer * Good mechanical strength – enables construction of robust magnets* Enables powerful MRI machines for detailed medical imaging * Supports development of next-generation particle accelerators for scientific research * Contributes to advancements in energy storage solutions for renewable energy integration
化学処理* Reaction vessels and heat exchangers * Components for handling corrosive chemicals* Exceptional corrosion resistance – withstands exposure to harsh chemicals * High melting point – maintains structural integrity at elevated temperatures * Good weldability – allows for secure fabrication of complex equipment* Ensures safe and reliable handling of corrosive materials in chemical plants * Minimizes downtime and maintenance costs due to extended equipment life * Enables efficient heat transfer in challenging chemical processing environments
コンシューマー・エレクトロニクス* High-performance capacitors for portable electronics * Heat sinks for electronic devices* High electrical conductivity – facilitates efficient energy storage and discharge * Good thermal conductivity – promotes effective heat dissipation * Tailorable properties for specific electronic applications* Enables development of compact and powerful capacitors for longer battery life in portable devices * Contributes to improved thermal management in electronic components for enhanced performance and reliability * Offers versatility for customization in various consumer electronics applications
ニオブ・チタン粉

ニオブチタン粉 仕様

仕様説明単位代表値
構成Niobium (Nb) and Titanium (Ti) content by weightwt%Nb: 40-75% <br> Ti: Balance
Balance Elementswt%< 0.X% (X denotes specific element like Ta, O, C, N)
粒度分布Range of particle diametersμm (microns)10-100 (can be customized)
粒子の形態学Shape of the powder particles球形
見かけ密度Density of the powder in its loose, poured stateg/cm³2.5-4.5
タップ密度Density of the powder after being tapped to settle any trapped airg/cm³Slightly higher than apparent density (e.g., 3.0-5.0)
流動性粉の流れやすさsec/50gLower values indicate better flow
酸素含有量Amount of oxygen present in the powderwt%≤ 0.X% (dependent on application)
窒素含有量Amount of nitrogen present in the powderwt%≤ 0.X% (dependent on application)
炭素含有量Amount of carbon present in the powderwt%≤ 0.X% (dependent on application)
含水率Amount of water vapor absorbed by the powderwt%≤ 0.X% (typically very low)
Laser Sintering PropertiesHow well the powder interacts with a laser beam during additive manufacturing processesOptimized for good melting, spreading, and densification

サプライヤーと価格

ニオブチタン粉末とワイヤーは、ニッチなハイテク用途と特殊な生産設備が必要なため、一握りの専門業者によってのみ生産されています。

大手NbTi粉末サプライヤー

  • ワウ・チャン(米国)
  • 寧夏東洋タンタル工業(中国)
  • スタルクHC(ドイツ)
  • フェリーマテリアル(オランダ)

価格

特殊粉砕金属間化合物として、 ニオブチタン粉 一般的な金属に比べ、割高な価格設定。100gあたりのコストは、純度や粒子の特性によって、$250から$500以上になる。

スクラップやリサイクルNbTi粉末は、バージン粉末の価格水準に比べて40%以上のディスカウントで取引されている。

線材のような代替形態では、超電導NbTi線材の1kgスプールは、撚り数や加工によって$3,000~$5,000+で販売されている。

他の素材との比較

ニオブ・チタンとニオブ・スズの比較

ニオブ錫(Nb3Sn)は、用途によってNbTiと競合するもう一つの一般的な超電導体である。NbTiに比べ、Nb3Snは:

メリット

  • 50%より高い臨界磁場強度
  • 高温でも超伝導を維持する能力

デメリット

  • より複雑な製造
  • より脆く、加工性が低い
  • より高価(高価な錫を含む)

このため、Nb3Snはより高いコストを正当化できる超高磁場磁石に適している一方、NbTiは12T以下の一般的な用途で最高の総合性能を発揮する。

チタンニオブとジルコニウムニオブの比較

NbTi合金のチタンの一部をジルコニウムに置き換えることで、延性と加工性がわずかに改善されたNbZr超電導体が生まれます。標準的なNbTiグレードとの主な違いは以下の通り:

NbZrの利点

  • 高い延性 - 複雑な伸線に最適
  • 低温での高い作業性
  • 磁束のピンニングセンターが少ない

NbTiの利点

  • 材料費の低減
  • より高い温度安定性
  • より高い臨界電流密度

そのため、NbZrは性能の限界に挑戦する特殊な高磁場マグネットコイルで再び競合する一方、NbTiはより優れた経済性と、医療や工業のニーズのほとんどを満たす実証済みの商業的特性を提供している。

限界とリスク

アスペクト説明緩和戦略
コストNiobium-titanium powder is an expensive specialty material, with prices exceeding $250 per 100 grams. This significantly impacts production costs and limits widespread adoption to high-value applications like medical equipment and scientific research.– Research and development into alternative superconductor materials with comparable performance but lower material costs. – Exploring methods for efficient recycling of niobium-titanium scrap to reduce reliance on virgin material.
脆さThe presence of intermetallic phases within the powder can make it prone to cracking under excessive strain or deformation during processing. This brittleness necessitates careful handling and manufacturing techniques to preserve the material’s ductility, which is crucial for shaping it into functional components.– Optimizing powder production processes to minimize the formation of brittle intermetallic phases. – Implementing annealing steps at strategic points during manufacturing to restore ductility and prevent cracking. – Tailoring the processing parameters, such as pressure and temperature, to best suit the specific powder characteristics.
Oxidation SensitivityNiobium-titanium powder readily oxidizes when exposed to temperatures exceeding 400°C. This oxidation degrades the material’s superconducting properties and ultimately hinders its performance. Additionally, exposure to oxidizing acids or environments further accelerates this degradation.– Implementing rigorous handling procedures in controlled environments to minimize exposure to air and moisture. – Utilizing inert gas atmospheres during processing steps involving high temperatures. – Employing protective coatings on the powder particles to create a barrier against oxidation.
Magnetic Field LimitationsNiobium-titanium exhibits a critical field limit, which is the maximum magnetic field strength it can sustain while remaining superconducting. This limit typically falls within the range of 12-15 Tesla. Applications requiring stronger magnetic fields necessitate alternative superconductor materials like niobium-zirconium (NbZr), which boasts a higher critical field but comes at a cost of increased complexity and fabrication challenges.– For applications requiring fields exceeding NbTi’s limits, exploring the use of NbZr or other high-temperature superconductors (HTS) while acknowledging their unique processing requirements and potential trade-offs in performance. – Optimizing the design of magnets utilizing NbTi to achieve the desired field strength within its operational limits. This may involve innovative coil configurations or incorporating additional structural support elements.
Processing ChallengesNiobium-titanium powder’s transformation into functional components like wires or tapes involves intricate processes like powder compaction, sintering, and multi-filament wire drawing. Each step requires careful control to achieve the desired microstructure and superconducting properties. Deviations from optimal processing parameters can lead to imperfections, reduced performance, or even material failure.– Investing in advanced manufacturing equipment with precise control over process parameters like temperature, pressure, and drawing speed. – Implementing rigorous quality control measures at each stage of the processing chain to identify and address potential issues. – Utilizing computational modeling tools to simulate and optimize the processing steps for achieving the desired material properties.
ニオブチタン粉

展望

ニオブチタンの世界需要は、主にMRI装置の生産とアップグレードに牽引され、また研究用の粒子衝突型加速器の拡大により、年間6-8%で安定的に成長すると予測される。

また、鉱業用途の磁気分離や、次世代小型核融合発電のための高温超電導体の改良も、この技術が商業化可能なレベルまで進歩し続ければ、成長する可能性がある。

参入障壁が高いため、既存のNbTiサプライヤーは、医療、科学、将来的なエネルギー分野での消費増加から利益を得るために有利な立場にある。スクラップNbTiのリサイクルも一次粉末の生産量を補うのに役立つ。

よくあるご質問

ニオブ・チタン粉末は何に使われるのか?

  • 主に高磁場MRIマグネット、粒子加速器、核融合炉、特殊産業用マグネットなどの超電導線材やテープの製造に使用される。また、生体適合性、強度、非磁性などの特性から、医療用インプラントや医療機器にも使用されている。

NbTiに含まれるニオブとチタンの典型的な割合は?

  • ニオブの重量比は40~75%で、残りはチタンである。実際の組成は、特性を最適化するために用途によって異なります。例えば、より高い温度安定性を得るためにはより高いNbが必要です。

NbTi粉末の製造方法は?

  • 主な製造ルートは、誘導溶解したインゴットをガスアトマイズする方法と、スクラップ/インゴットを粉砕して粉末にする水素化脱水処理である。どちらの方法でも、必要な小粒径の微細構造が得られる。

NbTiの臨界温度は?

  • NbTiが超伝導状態に転移する臨界温度は、正確な組成にもよるが9~10.5Kである。このため、液体ヘリウム冷却用途に適している。

ニオブを主成分とする超電導体には他にどのようなものがありますか?

  • NbTiが最も一般的であるが、ニオブ-スズ(Nb3Sn)は特殊な磁石向けに高い磁場強度が得られる。ニオブ-ジルコニウム(NbZr)は、絶対零度に近い温度ではNbTiよりも導電率が低いものの、延性に優れています。

ニオブ・チタンはI型超電導体かII型超電導体か?

  • NbTiはII型超伝導体に分類され、第一臨界磁場と第二臨界磁場の間の印加磁場において常伝導状態と超伝導状態を並行して示す。これにより高い臨界電流密度が得られる。

NbTiの劣化は懸念されますか?

  • 400℃を超えると、酸化による性能低下が問題となる。保護不活性雰囲気を維持することは、粉末加工やワイヤー製造において重要です。NbTiワイヤーをエポキシマトリックスで絶縁することで、使用中の酸化を防ぐことができます。

より多くの3Dプリントプロセスを知る

シェアする

フェイスブック
ツイッター
LinkedIn
WhatsApp
電子メール
メタル3dpロゴ小

MET3DP Technology Co., LTDは、中国青島に本社を置く積層造形ソリューションのリーディングプロバイダーです。弊社は3Dプリンティング装置と工業用途の高性能金属粉末を専門としています。

お問い合わせは、最良の価格とあなたのビジネスのためのカスタマイズされたソリューションを取得します!

関連記事

Met3DPについて

ビデオ再生

最新情報

製品

お問い合わせ

ご質問は?今すぐメッセージをお送りください!私たちはあなたのメッセージを受け取った後、チーム全体であなたの要求を提供します。 

メタル3DPの
製品パンフレット

最新製品&価格リスト