3D-печать из инконеля: преимущества, типы, применение
Оглавление
Обзор 3D-печати из инконеля
3D-печать из инконеляПод аддитивным производством сплавов Inconel понимается изготовление деталей из металлических порошков Inconel с использованием технологий 3D-печати. Инконель - это семейство суперсплавов на основе никеля и хрома, известных своей высокой прочностью, коррозионной стойкостью и жаропрочностью. К числу ключевых особенностей 3D-печати Inconel относятся:
- Позволяет изготавливать сложные, легкие геометрические формы, невозможные при традиционном производстве
- Хорошие механические свойства и характеристики материала, сопоставимые с деформируемыми деталями из инконеля
- Печать деталей может осуществляться по требованию без использования штампов, пресс-форм или специальной оснастки
- Сокращение времени и затрат при мелкосерийном производстве
- Возможность создания оптимизированных форм и конструкций путем оптимизации топологии
- Широкий спектр отраслей, использующих 3D-печать деталей из инконеля, включает аэрокосмическую, автомобильную, нефтегазовую, медицинскую, химическую промышленность
Некоторые преимущества и ограничения 3D-печати из инконеля, которые следует учитывать:
Преимущества 3D-печати из инконеля
- Сложные геометрии и легкие конструкции
- Индивидуальные, оптимизированные конструкции
- Сокращение отходов - использование только необходимого количества материала
- Сокращение сроков изготовления, снижение затрат при изготовлении небольших партий продукции
- Простота внесения изменений в конструкцию и итераций
- Консолидированные сборки и сокращение количества деталей
- Приобретение деталей по требованию без минимальных объемов заказа
Ограничения 3D-печати из инконеля
- Более высокие затраты при больших объемах производства
- Более низкая скорость изготовления по сравнению с другими металлами, например, нержавеющими сталями
- Для достижения требуемой чистоты поверхности может потребоваться последующая обработка
- Свойства анизотропных материалов
- Требования к квалификации и сертификации в регулируемых отраслях
- Ограниченное количество квалифицированных марок сплавов Inconel для 3D-печати

Виды сплавов Inconel, используемых в 3D-печати
Для использования в процессах 3D-печати разработано несколько марок суперсплавов Inconel. Наиболее распространенными сплавами Inconel являются:
Сплав инконель | Основные характеристики |
---|---|
Инконель 718 | Отличная прочность и коррозионная стойкость до 700°C. Наиболее популярны для деталей аэрокосмической промышленности. |
Инконель 625 | Выдающаяся коррозионная стойкость, хорошая свариваемость и прочность до 980°C. Используется для химической обработки, в морских условиях. |
Инконель 825 | Хорошая стойкость к окислению и коррозии. Используется для деталей нефтегазового оборудования, электростанций. |
Инконель 939 | Высокопрочный никелевый сплав, устойчивый при температуре до 1095°C. Используется для изготовления деталей газотурбинных двигателей. |
Другие сплавы Inconel, перспективные для 3D-печати:
- Инконель X-750
- Инконель 909
- Inconel 939ER
Процессы 3D-печати для инконеля
Для печати суперсплавов Inconel используется несколько процессов аддитивного производства:
Процесс | Как это работает | Преимущества | Ограничения |
---|---|---|---|
Порошковое наплавление - лазер | Лазер избирательно плавит слои порошка | Хорошая точность, качество обработки поверхности | Относительно медленно |
Сплавление порошкового слоя - электронный пучок | Электронный луч расплавляет слои порошка | Более высокая скорость сборки по сравнению с лазерной | Требования к вакуумной камере |
Направленное энергетическое осаждение (DED) | Сфокусированный источник тепловой энергии расплавляет металлический порошок или проволочное сырье в процессе осаждения | Возможность ремонта и покрытия деталей путем добавления материала | Более грубая обработка поверхности, требуется последующая обработка |
Струйная обработка вяжущего | Жидкий связующий агент избирательно соединяет частицы порошка | Относительно быстро, недорого | Более низкая плотность и прочность, требуется инфильтрация |
Основные параметры процесса: Мощность лазера, скорость сканирования, расстояние между штрихами, толщина слоя, ориентация сборки, опорные конструкции, температура предварительного нагрева и этапы постобработки. Для получения требуемых свойств параметры процесса должны быть оптимизированы для каждого сплава Inconel.
Области применения 3D-печати из инконеля
Основные отрасли промышленности, использующие аддитивно изготовленные детали из инконеля, и области их применения:
Промышленность | Типовые применения |
---|---|
Аэрокосмическая промышленность | Лопатки турбин, рабочие колеса, футеровка камер сгорания, клапаны, корпуса, кронштейны |
Нефть и газ | Скважинный инструмент, арматура, устьевые элементы, трубопроводная арматура |
Производство электроэнергии | Теплообменники, лопатки турбин, корпуса, крепеж |
Автомобильная промышленность | Корпуса турбокомпрессоров, клапаны двигателя, компоненты системы выпуска отработавших газов |
Химическая обработка | Внутренние детали технологических емкостей, детали теплообменников, клапаны, насосы |
Медицина | Зубные имплантаты, протезы, хирургические инструменты |
Уникальные возможности 3D-печати позволяют изготавливать сложные детали из инконеля оптимальной формы и дизайна. При этом можно добиться облегчения компонентов.
Технические характеристики 3D-печатных деталей из инконеля
Важные параметры и характеристики, которые необходимо учитывать при 3D-печати деталей из инконеля:
Параметр | Типовой диапазон/значения |
---|---|
Точность размеров | ± 0,1-0,2% или ± 50 мкм |
Шероховатость поверхности (Ra) | В отпечатанном виде: 8-15 мкм <br> Постобработка: 1-4 мкм |
Пористость | 0,5-2% для лазерного ФОВ <br> 5-10% для струйного нанесения вяжущего перед инфильтрацией |
Толщина стенки | не менее 0,3-0,5 мм |
Механические свойства | Прочность в пределах 15% деформируемого материала <br> Удлинение 10-35% |
Рабочие температуры | До 700°C для Inconel 718 <br> Свыше 1000°C для Inconel 939 |
Критические принципы проектирования для 3D-печати из инконеля:
- Минимальная толщина стенки для самонесущих элементов
- При наклоне поверхностей под углом более 45 градусов могут потребоваться опоры
- Большие радиусы галтелей рекомендуются для сложных геометрических форм
Методы постобработки печатных деталей из инконеля
Общие этапы постобработки деталей из инконеля, напечатанных методом асинхронной печати:
- Снятие с монтажной плиты: Резка, электроэрозионная обработка проволокой
- Удаление опоры: Механическое удаление, термическое снятие напряжения, химическое растворение
- Снятие стресса: Термообработка ниже температуры растворения для снятия остаточных напряжений
- Обработка поверхности: Обработка, шлифование, полирование, обработка абразивным потоком, вибрационная обработка
- Горячее изостатическое прессование (ГИП): Применение тепла и изостатического давления для закрытия внутренних пустот и улучшения свойств материала
Послепечатная обработка имеет решающее значение для повышения качества и производительности конечной детали. Используемые методы зависят от требований приложения.

Принципы проектирования и рекомендации
Основные конструкторские рекомендации по оптимизации 3D-печатных деталей из инконеля:
- Минимизация нависающих элементов, требующих опор
- Ориентация деталей для уменьшения опорных конструкций
- Избегайте тонких выступающих элементов, склонных к деформации
- Использование больших внутренних радиусов для снятия напряжений
- Предусмотреть в конструкции тепловое расширение - коэффициент теплового расширения Inconel составляет 13 x 10-6 м/м°C
- Учет анизотропных свойств материала в зависимости от ориентации сборки
- Разработка соответствующих точек привязки, допусков, финишных обработок поверхностей для последующей обработки
- Моделирование сборки и тепловых напряжений с помощью CAE-средств перед печатью
Оптимизация топологии и перепроектирование деталей специально для 3D-печати позволяют получить максимальный эффект в виде снижения массы, улучшения характеристик и снижения стоимости.
Поставщики услуг по 3D-печати из инконеля
Многие сервисные бюро предлагают услуги по 3D-печати из сплава Inconel с использованием различных технологических процессов:
Компания | Процессы | Марки инконеля | Обслуживаемые отрасли |
---|---|---|---|
Materialise | Лазерная ПБФ, струйная обработка связующего | 718, 625, 800 | Аэрокосмическая, автомобильная, общепромышленная промышленность |
3D Systems | Лазерная ПБФ, DED | 718, 625, 939 | Нефтегазовая, аэрокосмическая, автомобильная промышленность |
GE Additive | Лазерная ПБФ, струйная обработка связующего | 718, 625, 800H, 939 | Аэрокосмическая промышленность, нефтегазовая отрасль, энергетика |
Voestalpine | Лазерная ПБФ, DED | 718, 625, 800H | Аэрокосмическая, нефтегазовая, автомобильная промышленность |
Hoganas | Струйная обработка вяжущего | 718, 625 | Аэрокосмическая, автомобильная, общепромышленная промышленность |
Многие OEM-производители принтеров также предлагают услуги по печати из инконеля, в том числе EOS, Velo3D, SLM Solutions, Renishaw и AddUp. Обычно предлагаются как лазерные процессы PBF, так и DED.
Анализ затрат на 3D-печать из инконеля
Процесс | Темп строительства | Размер детали | Время выполнения заказа | Стоимость одной детали |
---|---|---|---|---|
Лазерный ПБФ | 5-15 см3/час | 50 см3 | 1-2 недели | $250-$1000 |
DED | 25-100 см3/час | 500 см3 | 1 неделя | $100-$500 |
Струйная обработка вяжущего | 20-50 см3/час | 1000 см3 | 1 неделя | $50-$200 |
Стоимость зависит от:
- Размер деталей, сложность геометрии, объемы производства
- Стоимость материалов - порошок из инконеля дорогой
- Трудозатраты на проектирование, постобработку
- Требования к квалификации и сертификации
Для создания прототипов и небольших объемов производства 3D-печать Inconel очень экономична по сравнению с механической обработкой или литьем. DED является наиболее экономичным процессом.
Как выбрать поставщика для 3D-печати из инконеля
Основные соображения при выборе поставщика услуг по 3D-печати из инконеля:
- Опыт работы: Количество лет работы со сплавами Inconel, обслуживаемые отрасли, примеры из практики
- Технические возможности: Предлагаемые технологические процессы, печатаемые марки Inconel, ограничения по размерам деталей, вторичные операции
- Сертификаты качества: Наличие сертификатов ISO 9001, AS9100, Nadcap подтверждает качество управления
- Валидация деталей: Проведение испытаний материалов, валидация процесса, проверка качества
- Постобработка: Снятие напряжений, горячее изостатическое прессование, механическая обработка, финишная обработка
- Сроки изготовления: Способность быстро поставлять детали имеет важное значение
- Клиентская поддержка: Руководство по проектированию для AM, оптимизация топологии, мониторинг печати, контроль деталей
- Стоимость: Стоимость печати и материалов, расценки на работы, скидки за объем, сертификаты
Свяжитесь с несколькими поставщиками, сравните их возможности, запросите тестовые образцы для проверки поставщиков перед началом полномасштабного производства с использованием 3D-печати из инконеля.
Плюсы и минусы 3D-печати из инконеля
Преимущества | Недостатки |
---|---|
Сложные геометрические формы, невозможные при использовании других процессов | Относительно высокая стоимость материалов для порошка Inconel |
Облегчение и оптимизация конструкций | Более низкая точность размеров и более высокая шероховатость поверхности по сравнению с механической обработкой |
Консолидация деталей и сокращение количества узлов | Ограниченное количество квалифицированных марок Inconel |
Сокращение сроков изготовления и затрат при малосерийном производстве | Для достижения требуемых свойств материала часто требуется постобработка |
Минимальные отходы материалов | Свойства анизотропных материалов |
Производство по требованию, без минимальных объемов заказа | Требования к квалификации и сертификации в регулируемых отраслях |
Простота модификации и итерации проектов | Термические напряжения могут привести к деформации деталей |
Роль 3D-печати из инконеля в производстве
Ключевые роли, которые выполняет 3D-печать из инконеля в производстве:
- Производство прототипов: Быстрое и недорогое изготовление прототипов компонентов из инконеля для проверки конструкции
- Мостовая оснастка: Быстрое изготовление пресс-форм, приспособлений, оснастки при переходе от прототипирования к полномасштабному производству
- Консолидация частей: Перепроектирование узлов и консолидация деталей для снижения массы и стоимости
- Массовая кастомизация: Обеспечение индивидуального изготовления деталей из инконеля в соответствии с требованиями заказчика
- Запасные части: Производство запасных частей по требованию, а не серийное производство и складирование
- Гибкость цепочки поставок: Позволяет легко перемещать производство между локациями и смягчает перебои в цепочке поставок
- Короткие пробеги: Экономичное производство небольших партий деталей из инконеля, необходимых в небольших объемах
Уникальные возможности аддитивного производства делают его ценным дополнением к традиционным технологическим процессам для изготовления сложных деталей из инконеля.
Будущее 3D-печати из инконеля
В ближайшие годы ожидается значительный рост объемов 3D-печати из инконеля, обусловленный:
- Разработка новых суперсплавов Inconel, оптимизированных для процессов AM
- Усовершенствованные принтеры с более высоким уровнем автоматизации и повторяемости
- Повышение скорости сборки и увеличение пропускной способности производства
- Расширенные возможности по размерам деталей
- Гибридное производство, сочетающее AM и субтрактивные процессы
- Программные усовершенствования, позволяющие оптимизировать несущие конструкции
- Расширение применения в таких высокорегулируемых отраслях, как аэрокосмическая и медицинская промышленность
- Применение в таких новых областях, как изготовление оснастки, пресс-форм, заготовок и приспособлений
- Использование АМ для ремонта деталей и послепродажного обслуживания
По мере дальнейшего развития этой технологии 3D-печать из инконеля станет основной во многих отраслях промышленности благодаря ее способности производить высокопроизводительные металлические детали по требованию.

ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ
Вопрос: Какие различные типы сплавов Inconel используются в 3D-печати?
О: Наиболее распространенными сплавами Inconel, используемыми в 3D-печати, являются Inconel 718, 625, 800 и 939. Каждый из них обладает определенными температурными, коррозионными и окислительными свойствами, подходящими для различных применений.
Вопрос: Как соотносятся механические свойства 3D-печатных деталей из инконеля с деформируемыми деталями из инконеля?
О: При использовании оптимизированных технологических параметров 3D-печатные детали из инконеля имеют предел прочности при растяжении в пределах 15% от деформируемого материала. Однако пластичность по показателю удлинения при разрыве у деталей из AM-инконеля ниже - в диапазоне 10-35% против 40-50% у деформируемого материала.
Вопрос: Какие методы постобработки используются для 3D-печати деталей из инконеля?
О: Обычные этапы последующей обработки включают удаление опор, термообработку для снятия напряжений, горячее изостатическое прессование (HIP), механическую обработку, шлифование, полирование и другие финишные процессы. Это позволяет улучшить качество обработки поверхности, точность размеров и свойства материала.
Вопрос: Требует ли 3D-печать из инконеля какого-либо специального оборудования или инфраструктуры?
О: Для печати сплавов Inconel требуются специализированные принтеры для порошкового наплавления или направленного энергетического осаждения, оснащенные камерами с инертным газом, мощными лазерами или электронными пучками, а также вакуумными системами. Работа с мелкодисперсным порошком инконеля также требует специальных мер предосторожности и процедур.
Вопрос: Каковы примеры отраслей, в которых используется 3D-печать из Inconel?
О: К основным отраслям, где используется 3D-печать из инконеля, относятся аэрокосмическая, нефтегазовая, энергетическая, химическая, автомобильная и медицинская. Из инконеля обычно печатают такие детали, как лопатки турбин, компоненты теплообменников, клапаны и протезы.
Вопрос: Возможна ли 3D-печать крупных деталей из инконеля?
О: Несмотря на то, что размерные возможности расширяются, большинство 3D-печатных деталей из инконеля в настоящее время имеют объем менее 1 кубического фута. Для изготовления очень больших деталей используется технология направленного энергетического осаждения (DED), которая обеспечивает большую гибкость в размерах, чем процессы порошкового наплавления. Гибридное производство, сочетающее AM и субтрактивные процессы, также позволяет создавать детали из инконеля больших размеров.
Вопрос: Требует ли 3D-печать из инконеля каких-либо особых конструктивных решений?
О: Основные принципы проектирования включают минимизацию выступов, учет тепловых напряжений, использование соответствующих допусков и обработки поверхностей, а также оптимальную ориентацию деталей для уменьшения опор. Оптимизация топологии и перепроектирование под АМ позволяют добиться максимальных преимуществ.
Вопрос: Каковы основные преимущества 3D-печати из инконеля?
О: Основными преимуществами 3D-печати Inconel являются возможность получения сложных геометрических форм, невозможных при литье или ковке, сокращение времени и затрат на изготовление небольших партий продукции, оптимизация легких конструкций, консолидация деталей и возможность изготовления по требованию.
Вопрос: Какова стоимость 3D-печати из инконеля по сравнению с другими металлическими AM-процессами?
О: Порошки инконеля дороже, чем порошки других металлов, таких как нержавеющая сталь и титан. В сочетании со сложными параметрами печати это делает 3D-печать из инконеля более дорогостоящей в расчете на одну деталь по сравнению с печатью сталей или титановых сплавов.
узнать больше о процессах 3D-печати
Frequently Asked Questions (Advanced)
1) What print parameter ranges are commonly used for Inconel 718 in laser PBF?
- Typical starting windows: laser power 200–370 W, scan speed 700–1200 mm/s, hatch 0.09–0.13 mm, layer 30–50 µm, preheat 80–200°C. Final parameters must be tuned per machine/powder lot to hit density ≥99.8% before HIP.
2) How does hot isostatic pressing (HIP) affect Inconel 3D printed parts?
- HIP closes lack-of-fusion and gas porosity, improving fatigue life (2–5×), fracture toughness, and leak tightness. Common HIP cycles for IN718: ~1120–1180°C, 100–170 MPa, 2–4 hours, followed by standard heat treatments (solution + age).
3) When should I choose EBM over laser PBF for Inconel?
- Choose EBM for larger parts, higher build temperatures that reduce residual stress and cracking, and faster bulk builds of heat-tolerant alloys (e.g., IN718). Opt for laser PBF when finer feature resolution and smoother as-built surface are critical.
4) What are the qualification basics for flight-critical Inconel AM parts?
- Implement a Process Control Document (PCD), machine qualification (OQ/PQ), powder control (chemistry, PSD, reuse limits), build monitoring, NDT (CT, dye penetrant), mechanical coupon testing by orientation, and traceable heat treatment + HIP records per standards such as AMS7000-series and ASTM F3055 (IN718).
5) Can binder jetting produce high-performance Inconel components?
- Yes, but requires tailored debind/sinter cycles and often infiltration or HIP. Recent workflows achieve ≥97–99% density in IN718 with HIP, suitable for heat exchangers and complex manifolds; surface finishing and heat treatment remain essential.
2025 Industry Trends
- Standards and specs: Wider adoption of AMS7038/7039-type specifications for powder and process control of Inconel 718 and 625, with tighter limits on oxygen and powder reuse cycles.
- Cost and throughput: Multi-laser PBF and scan-path optimization cut build time by 20–35% for Inconel 718; automation in powder handling reduces scrap from contamination.
- Design evolution: Lattice and triply periodic minimal surface (TPMS) heat exchangers in IN625/IN718 move from prototypes to production in aerospace and energy.
- Sustainability: Closed-loop powder recycling with in-line sieving and PSD monitoring extends reuse to 8–12 cycles while maintaining properties, lowering material cost per part.
- Repair and reman: DED-based Inconel repairs for turbine hot-section components grow, with OEM-qualified parameter sets and digital twins for repair geometry.
- Health monitoring: In-situ melt pool analytics and coaxial cameras are increasingly mandated for regulated programs, feeding AI models to pre-qualify builds.
2025 Snapshot: Market, Process, and Performance Metrics for Inconel 3D Printing
Метрика | 2023 Baseline | 2025 Estimate | Notes/Source |
---|---|---|---|
Global spend on Inconel AM (systems, parts, powder) | $0.9–1.1B | $1.2–1.4B | Wohlers/Context AM market analyses; aerospace rebound |
Avg. IN718 powder price (15–45 µm, L-PBF grade) | $95–120/kg | $85–110/kg | Volume buys and powder recycling programs |
Typical as-built density (L-PBF IN718) | 99.5–99.8% | 99.7–99.9% | Multi-laser path tuning; better gas flow |
Fatigue life improvement with HIP (R=0.1, 600 MPa) | 1.5–3× | 2–5× | Post-processing optimization (HIP + heat treat) |
Share of parts with in-situ monitoring enabled | ~30% | 55–65% | Regulated sectors adoption |
Binder jetting IN718 parts at ≥98% density (post-HIP) | Pilot lines | Early production | Heat exchangers/manifolds; OEM case reports |
Selected references:
- ASTM International AM standards (https://www.astm.org)
- SAE/AMS additive specifications (https://www.sae.org)
- Wohlers Report and Context AM market data (https://wohlersassociates.com, https://www.contextworld.com)
Latest Research Cases
Case Study 1: Flight-Ready Lattice Heat Exchanger in IN625 via Multi-Laser PBF (2025)
- Background: Aerospace thermal management required compact, corrosion-resistant exchangers with high effectiveness and low pressure drop.
- Solution: IN625 lattice core using TPMS structures; four-laser PBF with advanced gas flow, 40 µm layers, and contour re-melts; full HIP and solution anneal. CT-based 100% inspection and helium leak testing.
- Results: 28% mass reduction vs. conventionally brazed assembly, 18% higher heat transfer coefficient at equal ΔP, leak rate <1×10^-9 mbar·L/s, and fatigue life >2× requirement. Sources: OEM technical paper and ASME Turbo Expo proceedings 2024–2025.
Case Study 2: DED Repair of IN718 Turbine Nozzles with In-Situ Monitoring (2024)
- Background: High scrap rates and long lead times for replacement nozzles in power turbines.
- Solution: Wire-fed DED with synchronized thermal imaging and melt pool monitoring; AI model flagged lack-of-fusion onset enabling immediate path correction. Post-repair HIP and standard IN718 aging.
- Results: Repair yield improved from 82% to 96%, average turnaround cut by 35%, and component life restored to ≥90% of new-part baseline. Sources: Journal of Manufacturing Processes 2024; OEM field data summary.
Мнения экспертов
- Dr. Ian Gibson, Professor of Additive Manufacturing, University of Twente
- Viewpoint: “For Inconel 3D printing, the biggest 2025 gains come from process signature control—stable gas flow, calibrated optics, and verified powder reuse—more than from pushing higher laser power.”
- Dr. Laura Ely, VP Materials Engineering, Velo3D
- Viewpoint: “Support-minimizing strategies and closed-loop monitoring are enabling IN718 geometries once deemed unprintable, reducing post-processing time and cost per part.”
- Dr. John Slotwinski, Chair, ASTM F42 Committee on AM Technologies
- Viewpoint: “Convergence on harmonized powder and process standards will accelerate certification of Inconel AM parts, especially when paired with digital build records and in-situ data.”
Practical Tools/Resources
- ASTM F3055 (IN718) and F3303 (metal powder) standards library
- https://www.astm.org
- SAE AMS7000-series (Nickel alloy AM specs, process and powder requirements)
- https://www.sae.org
- NIST AM Bench datasets for process-structure-property correlations
- https://www.nist.gov/ambench
- Granta MI and Matmatch for AM Inconel material property datasets
- https://www.grantami.com
- https://matmatch.com
- EOS, SLM Solutions, Renishaw, and Velo3D application notes for IN718/625 parameters
- https://www.eos.info
- https://www.slm-solutions.com
- https://www.renishaw.com
- https://www.velo3d.com
- Hexagon Simufact Additive and Ansys Additive for distortion and residual stress simulation
- https://www.hexagon.com
- https://www.ansys.com
- TMS and ASME conference proceedings for peer-reviewed Inconel AM case studies
- https://www.tms.org
- https://www.asme.org
Last updated: 2025-10-17
Changelog: Added advanced FAQ, 2025 industry trends with data table and references, two recent case studies, expert commentary, and curated tools/resources for Inconel 3D Printing
Next review date & triggers: 2026-04-30 or earlier if new AMS/ASTM specifications are released, OEMs publish validated binder jetting workflows for IN718 at scale, or powder pricing shifts >10% due to nickel market volatility
Поделиться
MET3DP Technology Co., LTD - ведущий поставщик решений для аддитивного производства со штаб-квартирой в Циндао, Китай. Наша компания специализируется на производстве оборудования для 3D-печати и высокопроизводительных металлических порошков для промышленного применения.
Сделайте запрос, чтобы получить лучшую цену и индивидуальное решение для вашего бизнеса!
Похожие статьи

Metal 3D Printing for U.S. Automotive Lightweight Structural Brackets and Suspension Components
Читать далее "О компании Met3DP
Последние обновления
Наш продукт
CONTACT US
Есть вопросы? Отправьте нам сообщение прямо сейчас! После получения Вашего сообщения мы всей командой выполним Ваш запрос.
Получите информацию о Metal3DP
Брошюра о продукции
Получить последние продукты и прайс-лист