Hoe het gasverstuivingsproces werkt

Inhoudsopgave

Overzicht

Gas atomization is a metal powder production method that uses high-velocity inert gas jets to disintegrate a molten metal stream into fine spherical powder particles. The gas atomization process achieves excellent control over powder particle size distribution, morphology, purity, and microstructure.

Key attributes of gas-atomized powder include spherical particle shape, high purity, fine sizes down to 10 microns, and uniform composition. Gas atomization facilitates advanced powder-based manufacturing techniques like metal injection molding, additive manufacturing, and powder metallurgy pressing and sintering.

This guide provides a comprehensive overview of the gas atomization process and powder. It covers atomization methods, particle formation, process parameters, equipment, applicable alloys, powder characteristics, product specifications, applications, and suppliers. Helpful comparison tables are included to summarize technical details.

gas atomization process

Hoe de Verstuiving van gas Werken

Gas atomization converts molten alloy into powder using the following fundamental steps:

Gas Atomization Process Stages

  • Smeltend – Alloy is melted in an induction furnace and superheated above its liquidus temperature
  • Gieten – Molten metal stream poured into an atomization chamber
  • Verneveling – High velocity inert gas jets disintegrate the metal into fine droplets
  • Verharding – Metal droplets rapidly solidify into powder particles as they fall through the chamber
  • Collectie – Powder particles collected in a cyclone separator at bottom of tower

The key phenomenon occurs when the kinetic energy of the gas jets overcomes the metal’s surface tension to shear the liquid stream into droplets. These droplets freeze into powder particles with spherical morphology.

Careful process control allows tailored powder particle sizes, purity, and microstructures.

Methods of Gas Atomization

There are two primary methods of gas atomization used in industry:

Gas Atomization Methods

MethodeBeschrijvingVoordelenBeperkingen
Close-coupled atomizationNozzle in close proximity to melt pour pointCompact design, lower gas usePotential melt contamination from nozzle
Free-fall atomizationNozzle located below pour pointReduced melt contaminationRequires taller atomization tower

Close-coupled designs recycle the atomizing gas but risk some melt oxidation. Free-fall offers cleaner atmosphere with less risk of nozzle reaction.

Additional variants include multiple gas nozzles, ultrasonic atomization, centrifugal atomization, and coaxial nozzle designs for specialized applications.

Gas Atomization Nozzle Designs

Various nozzle designs create the high velocity gas jets needed for atomization:

Gas Atomization Nozzle Types

NozzleBeschrijvingGas Flow PatternDruppelgrootte
De LavalConverging-diverging nozzleSupersonicLarge, wide distribution
ConicalSimple conical orificeSonicMedium
SlitElongated slit orificeSonicKlein
MeervoudigArray of micro-nozzlesSonic/supersonicVery small, narrow distribution

De Laval nozzles use gas acceleration to supersonic velocities but have complex geometry. Sonic nozzles with simplified shapes offer more flexibility.

Smaller droplets and tightly controlled size distribution are achieved by using multiple micro-nozzles or slit configurations.

Powder Formation and Solidification

The shearing of molten metal into droplets and subsequent solidification follow distinct mechanisms:

Powder Formation Stages

  • Breakup – Rayleigh jet instability causes perturbations and droplet formation
  • Vervorming – Droplets elongate into ligaments due to air drag forces
  • Rupture – Ligaments breakdown into droplets close to final size
  • Verharding – Rapid cooling via gas contact and radiation forms solid particles
  • Deceleration – Loss of velocity as particles move down through atomization chamber

The combined effects of surface tension, turbulence, and air drag determine final particle sizes and morphology. Maximum particle cooling rates over 1,000,000 °C/s quench metastable phases.

Procesparameters

Key gas atomization process parameters include:

Verstuiving van gas Parameters

ParameterTypisch bereikEffect on Powder
Gas druk2-10 MPaIncreasing pressure reduces particle size
Gas velocity300-1200 m/sHigher velocity produces finer particles
Gasstroomsnelheid0.5-4 m3/minIncreases flow for higher throughput and finer sizes
Melt superheat150-400°CHigher superheat reduces satellites and improves powder flow
Melt pour rate10-150 kg/minLower pour rates improve particle size distribution
Melt stream diameter3-8 mmLarger stream allows higher throughput
Separation distance0.3-1 mGreater distance reduces satellite content

Balancing these parameters allows control of powder particle size, shape, production rate, and other characteristics.

Alloy Systems for Gas Atomization

Gas atomization can process almost any alloy into powder form including:

Alloys Suitable for Gas Atomization

  • Titanium legeringen
  • Nikkel-superlegeringen
  • Kobalt superlegeringen
  • Roestvrij staal
  • Gereedschapsstaal
  • Laaggelegeerd staal
  • Iron and nickel base alloys
  • Edelmetalen
  • Intermetallics

Gas atomization requires melting temperatures below the decomposition point of the atomizing gas. Typical gases include argon, nitrogen, and helium.

Refractory alloys with very high melting points like tungsten can be challenging to atomize and often require specialized processing.

Most alloys require melt superheating well above the liquidus temperature to maintain sufficient fluidity for atomization into finely dispersed droplets.

Characteristics of Gas Atomized Powder

Typical characteristics of gas atomized powder:

Gas Atomized Powder Characteristics

KenmerkendBeschrijvingBetekenis
DeeltjesmorfologieZeer bolvormigExcellent flowability, packing density
DeeltjesgrootteverdelingAdjustable in 10-150 μm rangeControls pressed density and sintering behavior
Particle size spanCan achieve tight distributionsProvides uniform component properties
Chemical purityTypically >99.5% excluding planned alloysAvoid contamination from nozzle reactions
Zuurstofgehalte<1000 ppmCritical for high performance alloys
Schijnbare dichtheidUp to 60% of theoreticalIndicative of pressibility and handling
Interne porositeitHeel laagGood for microstructural homogeneity
OppervlaktemorfologieSmooth with some satellitesIndicates process stability

The spherical shape and adjustable size distribution facilitate usage in secondary powder consolidation processes. Tight control over oxygen and chemistry enables high performance alloys.

Specifications for Gas Atomized Powders

International standard specifications help define:

  • Deeltjesgrootteverdeling
  • Apparent density ranges
  • Hall flow rates
  • Acceptable oxygen and nitrogen levels
  • Allowable microstructure and porosity
  • Grenzen aan de chemische samenstelling
  • Bemonsteringsprocedures

This supports quality control and reproducible powder behavior.

Specifications for Gas Atomized Powders

StandaardMaterialenParametersTestmethoden
ASTM B964Titanium legeringenParticle size, chemistry, microstructureX-ray diffraction, microscopy
AMS 4992Aerospace titanium alloysParticle size, oxygen contentSieve analysis, inert gas fusion
ASTM B823Tool steel powderSchijnbare dichtheid, stroomsnelheidHall-stroommeter, Scott-volumemeter
SAE AMS 5050Nikkel legeringenParticle size, morphologyLaser diffraction, SEM
MPIF 04Many standard alloysSchijnbare dichtheid, stroomsnelheidHall-debietmeter, getapte dichtheid

Specifications are tailored to critical application requirements in aerospace, automotive, medical, and other quality-driven industries.

Applications of Gas Atomized Powder

Gas atomized powders enable manufacturing of high performance components via:

  • Metaalspuitgieten (MIM)
  • Additieve Productie (AM)
  • Heet isostatisch persen (HIP)
  • Poeder smeden
  • Thermal and Cold Spray
  • Powder Metallurgy Pressing and Sintering

Benefits versus wrought materials:

  • Complex geometries with fine features
  • Uitstekende mechanische eigenschappen
  • Near full density consolidation
  • Novel and customized alloys
  • Diverse materiaalopties

Gas atomization excels at producing spherical, flowing powders optimal for automated processing of intricate components with high quality standards across industries.

Global Suppliers of Gas Atomized Powders

Prominent global suppliers of gas atomized powders include:

Gas Atomized Powder Manufacturers

BedrijfMaterialenMogelijkheden
ATI-poedermetalenTitaan, nikkel, gereedschapsstaallegeringenBroad alloy range, high volumes
Praxair OppervlaktetechnologieënTitanium-, nikkel-, kobaltlegeringenWide alloy selection, toll processing
Sandvik VisarendStainless steels, low alloy steelsSpecialists in ferrous materials
HogenäsGereedschapsstaal, roestvrij staalCustom alloys, additive manufacturing powders
Timmerman additiefTitanium-, nikkel-, kobaltlegeringenCustom alloys, specialized particle sizes

Smaller regional suppliers also offer gas atomized powders, often servicing niche alloys or applications.

Many providers also undertake sieving, blending, coating, and other powder post-processing operations.

Advantages vs. Limitations of Gas Atomization

Gas Atomization – Pros and Cons

VoordelenBeperkingen
Sferische poedermorfologieHigher upfront capital costs
Controlled particle size distributionsRequires high purity inert gas
Applicable to many alloy systemsRefractory alloys challenging to atomize
Clean powder chemistry and microstructureCan experience nozzle erosion
Rapid powder quenching preserves metastable phasesRequires melt superheating well above liquidus
Continuous powder production processPowder shape limits green strength

The spherical shape and fine sizes of gas atomized powder provide distinct advantages but come at a higher operational cost versus simpler mechanical comminution processes.

Selecting Gas Atomized Powder

Key aspects when selecting gas atomized powder:

  • Desired chemistry and alloy composition
  • Doelverdeling van de deeltjesgrootte
  • Suitable apparent and tap density ranges
  • Oxygen and nitrogen limits dictated by application
  • Flow characteristics for automated powder handling
  • Sampling procedures to ensure representativeness
  • Vendor technical expertise and customer service
  • Total cost considerations

Testing prototype builds helps qualify new alloys and gas atomized powders for an application. Collaborating closely with the powder producer enables optimization.

FAQ

What is the smallest particle size that gas atomization can produce?

Specialized nozzles can produce single-digit micron powder down to 1-5 microns. However, ultrafine powder has very low apparent density and exhibits strong interparticle Van der Waals forces, requiring careful handling.

What causes powder satellites during gas atomization?

Satellites form when droplets are too large or collide and partially rejoin before fully solidifying. Higher superheat, lower pour rates, and increased separation distance all help reduce satellites.

Why is high purity inert gas required for gas atomization?

High velocity gas jets can erode metal from the nozzle over time and contaminate powder. Reactive gases like nitrogen and oxygen also negatively affect powder purity and alloy performance.

Hoe is gasverstuiving te vergelijken met waterverstuiving?

Water atomization produces more irregular powder at larger sizes of 50-150 microns typically. Gas atomization allows finer sizes down to 10 microns with spherical morphologies preferred for pressing and sintering applications.

Wat is centrifugale verstuiving?

In centrifugal atomization, molten metal is poured into a spinning disk that throws off fine molten metal droplets that solidify into powder. This method offers higher production rates than gas atomization but reduced powder size and shape control.

Can you switch alloys quickly during gas atomization?

Yes, with specialized equipment the melt stream can be changed rapidly to produce composite and alloyed powders. However, cross-contamination between alloys should be minimized through chamber purging.

Conclusie

The gas atomization process produces spherical, flowing metallic powders with tightly controlled particle size distribution, purity, and microstructural characteristics optimal for advanced powder consolidation processes across critical applications. Careful manipulation of process parameters and specialized nozzle designs allow extensive control over final powder characteristics. With continued development, gas atomization provides engineers greater ability to manufacture high-performance components in creative new ways.

ken meer 3D-printprocessen

Delen op

Facebook
Twitteren
LinkedIn
WhatsAppen
E-mail
metalen 3dp-logo klein

MET3DP Technology Co, LTD is een toonaangevende leverancier van additieve productieoplossingen met hoofdkantoor in Qingdao, China. Ons bedrijf is gespecialiseerd in 3D printapparatuur en hoogwaardige metaalpoeders voor industriële toepassingen.

Onderzoek om de beste prijs en een op maat gemaakte oplossing voor uw bedrijf te krijgen!

gerelateerde artikelen

Over Met3DP

Video afspelen

Recente update

Ons product

NEEM CONTACT MET ONS OP

Nog vragen? Stuur ons nu een bericht! Na ontvangst van uw bericht behandelen wij uw verzoek met een heel team. 

Koop Metal3DP's
Productbrochure

Ontvang de nieuwste producten en prijslijst