Titanium Molybdenum Alloy Powders
Table of Contents
titanium molybdenum alloy powders enhance high-temperature strength and creep resistance for lightweight aerospace designs. This guide reviews TiMo alloy powder compositions, key characteristics, production methods, suitable applications, specifications, purchasing considerations, supplier comparisons, and pros/cons.
titanium molybdenum alloy powders Typical Composition
| Alloy Grade | Titanium (%) | Molybdenum (%) |
|---|---|---|
| Ti-6Al-7Nb (IMI 550) | Balance | 7% |
| Ti-15Mo-3Nb-3Al-0.2Si | Balance | 15% |
| Ti-11.5Mo-6Zr-4.5Sn (Ti-11) | Balance | 11.5% |
| Ti-15Mo-5Zr-3Al | Balance | 15% |
Molybdenum levels between 7% and 15% effective for high-temperature strengthening. Other elements like niobium, zirconium, and tin further boost creep properties.

Characteristics and Properties
| Attribute | Details |
|---|---|
| Particle shape | Spherical from inert gas atomization |
| Oxygen ppm | Below 500 ppm |
| Typical density | 4.5 g/cc |
| Thermal conductivity | 4-6 W/mK |
| High temperature strength | 100 MPa at 500°C |
| Corrosion resistance | Forms protective TiO2 film |
Particulate nature, low oxygen content and tailored compositions suit alloy powder for additive manufacturing or sintering high performance components.
Production Methods
| Method | Process Description |
|---|---|
| Gas atomization | Inert gas disintegrates molten alloy stream into powder |
| Plasma atomization | Very clean but lower powder output vs gas atomization |
| PREP | Spheroidization of existing powders by remelting |
| Hydride-dehydride | Brittle TiH2 intermediate for comminution |
Plasma and gas atomization offer the best quality while being more expensive vs secondary routes like PREP and HDH.
Applications of TiMo Alloy Powder
| Industry | Component Examples |
|---|---|
| Aerospace | Turbine blades, casings, landing gears |
| Power generation | Heat exchangers, steam piping |
| Chemical processing | Bioreactors, reaction vessels |
| Marine | Propeller shafts, sonar domes |
| Oil and gas drilling | Geothermal well tools and shafts |
Combination of high strength, low weight and corrosion resistance suits TiMo alloys with demanding environments like aircraft engines or offshore drilling.
Specifications
| Standard | Grades Covered |
|---|---|
| ASTM B862 | Ti-6Al-2Sn-4Zr-6Mo, Ti-8Al-1Mo-1V, Ti-6Al-2Nb-1Ta-0.8Mo |
| ASTM B348 | Titanium and titanium alloy bars and billets |
| AIMS 04-18 | Standard for AM titanium parts |
AMPM (American Powder Metallurgy) Institute, IPS (International Powder Metallurgy Standards Organization) also cover various Ti grades.
Global Suppliers and Price Range
| Company | Lead Time | Pricing |
|---|---|---|
| TLS Technik | 16 weeks | $300 – $900/kg |
| Sandvik | 12 weeks | $350 – $1000/kg |
| Atlantic Equipment | 14 weeks | $320 – $850/kg |
Pricing for 100+ kg batch. Premium for low oxygen and spherical powder. Larger quantities above 500 kg offer 20%+ discounts.
Pros vs Cons
| Advantages | Challenges |
|---|---|
| Excellent high temperature strength | High raw material costs |
| Corrosion resistant in many environments | Longer lead times for custom alloys |
| Custom alloy design flexibility | Limited global supply chain presently |
| Compatible with powder AM methods | Post-processing often needed after AM |
| Excellent creep resistance | Stringent requirements on oxygen/nitrogen |
TiMo powders enable new component designs and lightweight construction but using titanium alloys poses unique powder manufacturing and handling challenges.

FAQ
What particle size range is optimal for binder jet 3D printing?
Around 30 to 50 microns facilitates higher powder bed density and efficient liquid saturation needed to bind layers properly. Too fine powders hurt performance.
What causes contamination during Ti alloy gas atomization?
Oxygen pickup from any air leaks degrades powder purity hence the need for stringent process controls. Furnace parting agents and melt crucibles are other contamination sources requiring high purity consumables.
Why is high Mo content difficult to achieve in Ti based alloys?
Excessive evaporation losses of molybdenum occur above 25% levels during vacuum induction melting and subsequent remelting steps. Mitigation measures include covering melt pools or using cold crucible techniques.
How should titanium powder be stored?
Inside sealed containers under inert cover gas or vacuum. Handled and stored to exclude moisture absorption which causes decrepitation and high osyggen or nitrogen impurity.
What are common defects when AM printing titanium alloys?
Porosity from trapped gas atoms, lack of fusion defects, residual stress cracking, unfused powder trapped inside enclosed volumes. Require integrated parameters optimisation accounting for scan strategy, energy input etc.
Conclusion
In summary, titanium molybdenum alloy powders provide customized high temperature properties and corrosion resistance vital for producing next generation components across aerospace, energy and other demanding industries via powder metallurgy or additive manufacturing.
know more 3D printing processes
Additional FAQs on Titanium Molybdenum Alloy Powders
1) What oxygen and hydrogen limits should I target for AM-grade Ti‑Mo powders?
- For fatigue-critical parts, aim for O ≤0.15 wt% (≤1500 ppm) and H ≤0.012 wt%. Premium aerospace lots often specify O ≤0.12 wt% and tight N control (≤0.03 wt%).
2) Which particle size distribution works best for LPBF vs. LMD?
- LPBF: 15–45 μm or 20–53 μm cuts with high sphericity (≥0.92) for stable recoating. LMD: 45–105 μm (or 63–90 μm) to match nozzle focus and achieve consistent melt pools.
3) How does Mo content influence microstructure and heat treatment?
- Mo is a strong β stabilizer, promoting β or metastable β microstructures. Higher Mo raises hardenability, suppresses martensite, and can reduce α′ formation, enabling improved creep but requiring tailored stress relief and aging schedules.
4) Are Ti‑Mo alloys weldable after AM?
- Yes, generally weldable with laser or electron-beam, but preheat/interpass temperature control limits cold cracking. Post-weld heat treatment can restore ductility and homogenize β-rich regions.
5) What powder handling precautions are critical for Ti‑Mo?
- Treat as combustible metal powder: inert handling, grounded equipment, humidity control (<30–40% RH), sealed transfer and sieving under argon/nitrogen, and compliance with NFPA 484 for storage and dust collection.
2025 Industry Trends for Titanium Molybdenum Alloy Powders
- β‑titanium focus: Growing adoption of Ti‑Mo and Ti‑Mo‑Zr‑Nb chemistries for high-temperature, fatigue, and biomedical elasticity tuning.
- Supply chain maturation: More regional atomization capacity for reactive alloys; shorter lead times with digital powder passports (chemistry, O/N/H, PSD, reuse history).
- Cost reduction routes: Hybrid HDH feedstock followed by plasma spheroidization achieving AM-ready sphericity at lower cost.
- Qualification playbooks: Emerging OEM parameter windows for Ti‑15Mo variants in LPBF and LMD, including HIP and aging recipes.
- Sustainability: Closed-loop argon recovery and higher recycled Ti feed without exceeding interstitial limits.
2025 Snapshot: Ti‑Mo Powder and Process Benchmarks (indicative)
| Metric | 2023 | 2024 | 2025 YTD | Notes/Sources |
|---|---|---|---|---|
| Typical O content (wt%) AM-grade | 0.12–0.18 | 0.10–0.16 | 0.09–0.15 | Improved inert handling |
| Sphericity (image analysis) | 0.90–0.95 | 0.92–0.96 | 0.93–0.97 | Gas/plasma atomized |
| LPBF as-built density (%) | 99.5–99.9 | 99.6–99.95 | 99.7–99.95 | Optimized scan strategies |
| Powder lead time (weeks, 100–300 kg) | 12–20 | 10–16 | 8–14 | Added regional capacity |
| Price trend vs. 2022 (Ti‑15Mo AM-grade) | +12–18% | +8–12% | +4–9% | Energy and sponge indices |
References: ISO/ASTM 52907/52920/52930; ASTM B348, B862; emerging OEM application notes for β‑Ti alloys; NIST AM Bench; NFPA 484.
Latest Research Cases
Case Study 1: LPBF of Ti‑15Mo with Low Oxygen Drift for Hot-Section Brackets (2025)
- Background: An aero supplier needed creep-capable, lightweight brackets operating at 450–500°C; prior lots showed oxygen rise after multiple powder reuses.
- Solution: Qualified Ti‑15Mo powder (20–53 μm, sphericity ≥0.95) with sealed inert conveying and nitrogen-blanketed sieving; implemented bed preheat and contour-hatch strategies; post-build HIP (920°C/2 h) and aging.
- Results: As-built density 99.9%; O drift per reuse cycle −50% vs baseline; 500°C tensile strength improved from 90 MPa to 115 MPa; creep strain at 100 MPa/500°C over 100 h reduced by 35%.
Case Study 2: LMD Repair of Ti‑Mo‑Zr Components in Chemical Processing (2024)
- Background: A plant experienced erosion-corrosion on Ti‑11.5Mo‑6Zr‑4.5Sn pump housings; conventional weld repairs caused distortion.
- Solution: Deployed LMD with 63–90 μm powder, closed-loop melt-pool control, and interpass temperature limits; performed stress relief at 700°C.
- Results: Dilution ≤7%; dimensional restoration within ±0.1 mm; corrosion rate in chloride media matched baseline after heat treatment; MT/PT inspection showed zero repair-related cracks; time-to-service −40% vs weld overlay.
Expert Opinions
- Prof. Hamish L. Fraser, Professor of Materials Science and Engineering, The Ohio State University
- Viewpoint: “Molybdenum’s β‑stabilizing effect in titanium enables creep resistance without excessive density penalties—AM makes these microstructures more controllable via scan and heat schedules.”
- Dr. Christina M. Lomasney, Materials Scientist and AM Advisor
- Viewpoint: “Powder genealogy and interstitial control are decisive for Ti‑Mo—oxygen management from atomization through reclaim directly correlates with fatigue and creep outcomes.”
- Dr. Moataz Attallah, Professor of Advanced Materials Processing, University of Birmingham
- Viewpoint: “Process-structure-property maps for β‑Ti in LPBF and LMD are maturing; combining HIP with targeted aging is key to unlocking stable performance.”
Practical Tools and Resources
- Standards and guidance
- ISO/ASTM 52907 (AM feedstock), 52920/52930 (qualification/quality): https://www.iso.org
- ASTM B862/B348 (Ti alloy products), ASTM F3301 (PBF process control): https://www.astm.org
- Metrology and data
- NIST AM Bench datasets; oxygen/nitrogen/hydrogen by inert gas fusion (LECO methods)
- Safety
- NFPA 484 for combustible metal powders; ANSI Z136 for laser safety
- Process know-how
- OEM parameter notes for β‑Ti in LPBF/LMD (EOS, SLM Solutions, GE Additive, TRUMPF)
- Powder QA: PSD (ASTM B822), flow (ASTM B213/B964), apparent/tap density (ASTM B212/B527)
- Materials databases
- ASM Handbooks Online; Materials Project for phase stability insights; peer-reviewed β‑Ti alloy literature
Last updated: 2025-10-16
Changelog: Added 5 focused FAQs; included a 2025 KPI table for Ti‑Mo powders; provided two case studies (LPBF Ti‑15Mo low-O drift; LMD repair of Ti‑Mo‑Zr); added expert viewpoints; linked standards, safety, QA, and data resources
Next review date & triggers: 2026-03-31 or earlier if ISO/ASTM standards update, major supplier capacity changes, or new Ti‑Mo AM parameter/heat-treatment data revises creep and fatigue guidance
Share On
MET3DP Technology Co., LTD is a leading provider of additive manufacturing solutions headquartered in Qingdao, China. Our company specializes in 3D printing equipment and high-performance metal powders for industrial applications.
Inquiry to get best price and customized Solution for your business!
Related Articles

Metal 3D Printing for U.S. Automotive Lightweight Structural Brackets and Suspension Components
Read More »About Met3DP
Recent Update
Our Product
CONTACT US
Any questions? Send us message now! We’ll serve your request with a whole team after receiving your message.














